Abstract

The chirp of an ultrashort laser pulse can be extracted with high accuracy from a modified spectrum autointerferometric correlation waveform by using a new time domain algorithm that allows signal averaging. We display results revealing high sensitivity to chirp even with signal-to-noise levels approaching unity. Correction algorithms have been developed to accommodate signal distortion arising from bandwidth limitations, interferometer misalignment, and nonquadratic detector response.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
    [CrossRef]
  2. C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
    [CrossRef]
  3. A. K. Sharma, P. A. Naik, and P. D. Gupta, Opt. Express 12, 1389 (2004).
    [CrossRef] [PubMed]
  4. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale (Academic, 1996).
  5. T. Hirayama and M. Sheik-Bahae, Opt. Lett. 27, 860 (2002).
    [CrossRef]
  6. M. Sheik-Bahae, Opt. Lett. 22, 399 (1997).
    [CrossRef] [PubMed]
  7. J. W. Nicholson, M. Mero, J. Jasapara, and W. Rudolph, Opt. Lett. 25, 1801 (2000).
    [CrossRef]

2004 (1)

2002 (1)

2000 (1)

1999 (1)

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

1997 (1)

1993 (1)

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Diels, J.-C.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale (Academic, 1996).

Gupta, P. D.

Hirayama, T.

Iaconis, C.

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

Jasapara, J.

Kane, D. J.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Mero, M.

Naik, P. A.

Nicholson, J. W.

Rudolph, W.

J. W. Nicholson, M. Mero, J. Jasapara, and W. Rudolph, Opt. Lett. 25, 1801 (2000).
[CrossRef]

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale (Academic, 1996).

Sharma, A. K.

Sheik-Bahae, M.

Trebino, R.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Walmsley, I. A.

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (1)

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale (Academic, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimentally obtained IAC traces of an (a) unchirped pulse, (c) a chirped pulse, and (e) a chirped pulse with distortion. The distortion is produced by misaligning the autocorrelator. Corresponding MOSAIC maximum and minimum envelopes are shown in (b), (d), and (f). The corrected minimum envelope of the MOSAIC is depicted in (d) with triangles.

Fig. 2
Fig. 2

Left, single IAC trace just above the noise level. Right, averaged MOSAIC waveform produced after acquiring 1200 noisy IAC traces (triangles); the chirp of the same pulse obtained with negligible noise is reproduced (solid curve).

Fig. 3
Fig. 3

Semilog plot of the experimental data (triangles) and fit (solid curves) that reveal high-order components of chirp on a 120 fs Ti:sapphire laser pulse.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S MOSAIC ( τ ) = g ( τ ) + [ g s 2 ( τ ) + g c 2 ( τ ) ] 1 2 cos [ 2 ω τ + Φ ( τ ) ] ,
Φ ( τ ) = tan 1 ( g s g c ) ,
g s ( τ ) = f ( t ) f ( t + τ ) sin [ 2 Δ ϕ ( t ) ] d t ,
g c ( τ ) = f ( t ) f ( t + τ ) cos [ 2 Δ ϕ ( t ) ] d t .
S min ( τ ) = g ( τ ) [ g s ( τ ) 2 + g c ( τ ) 2 ] 1 2 .
{ S min ( τ ) } ave = g ( τ ) ¯ η [ g s ( τ ) 2 + g c ( τ ) 2 ¯ ] 1 2 ,
η = S min ( 0 ) ¯ [ g 0 ( 0 ) 2 + g c ( 0 ) 2 ¯ ] 1 2 .

Metrics