Abstract

Frequency correlations in multiply scattered light that are present in quantum fluctuations are investigated. The speckle correlations for quantum and classical noise are compared and are found to depend markedly differently on optical frequency, which was confirmed in a recent experiment. Furthermore, novel mesoscopic correlations are predicted that depend on the photon statistics of the incoming light.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
    [Crossref] [PubMed]
  2. I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
    [Crossref] [PubMed]
  3. N. Garzia and A. Z. Genack, Opt. Lett. 16, 1132 (1991).
    [Crossref]
  4. A. Z. Genack, Phys. Rev. Lett. 58, 2043 (1987).
    [Crossref] [PubMed]
  5. I. Vellekoop, P. Lodahl, and A. Lagendijk, Phys. Rev. E 71, 056604 (2005).
    [Crossref]
  6. F. Scheffold and G. Maret, Phys. Rev. Lett. 81, 5800 (1998).
    [Crossref]
  7. A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Nature 404, 850 (2000).
    [Crossref] [PubMed]
  8. P. Lodahl and A. Lagendijk, Phys. Rev. Lett. 94, 153905 (2005).
    [Crossref] [PubMed]
  9. P. Lodahl, A. P. Mosk, and A. Lagendijk, Phys. Rev. Lett. 95, 173901 (2005).
    [Crossref] [PubMed]
  10. C. W. J. Beenakker, Phys. Rev. Lett. 81, 1829 (1998).
    [Crossref]
  11. J. W. Goodman, Statistical Optics (Wiley, 1985).
  12. R. Berkovits and S. Feng, Phys. Rep. 238, 135 (1994).
    [Crossref]
  13. J. F. de Boer, M. P. van Albada, and A. Lagendijk, Phys. Rev. B 45, 658 (1992).
    [Crossref]
  14. J. F. de Boer, "Optical fluctuations on the transmission and reflection of mesoscopic systems," Ph.D. thesis (University of Amsterdam, 1995), www.tn.utwente.nl/cops/pdf/theses/deboer.pdf.

2005 (3)

I. Vellekoop, P. Lodahl, and A. Lagendijk, Phys. Rev. E 71, 056604 (2005).
[Crossref]

P. Lodahl and A. Lagendijk, Phys. Rev. Lett. 94, 153905 (2005).
[Crossref] [PubMed]

P. Lodahl, A. P. Mosk, and A. Lagendijk, Phys. Rev. Lett. 95, 173901 (2005).
[Crossref] [PubMed]

2000 (1)

A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Nature 404, 850 (2000).
[Crossref] [PubMed]

1998 (2)

F. Scheffold and G. Maret, Phys. Rev. Lett. 81, 5800 (1998).
[Crossref]

C. W. J. Beenakker, Phys. Rev. Lett. 81, 1829 (1998).
[Crossref]

1994 (1)

R. Berkovits and S. Feng, Phys. Rep. 238, 135 (1994).
[Crossref]

1992 (1)

J. F. de Boer, M. P. van Albada, and A. Lagendijk, Phys. Rev. B 45, 658 (1992).
[Crossref]

1991 (1)

1988 (2)

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref] [PubMed]

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref] [PubMed]

1987 (1)

A. Z. Genack, Phys. Rev. Lett. 58, 2043 (1987).
[Crossref] [PubMed]

Beenakker, C. W.

C. W. J. Beenakker, Phys. Rev. Lett. 81, 1829 (1998).
[Crossref]

Berkovits, R.

R. Berkovits and S. Feng, Phys. Rep. 238, 135 (1994).
[Crossref]

Chabanov, A. A.

A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Nature 404, 850 (2000).
[Crossref] [PubMed]

de Boer, J. F.

J. F. de Boer, M. P. van Albada, and A. Lagendijk, Phys. Rev. B 45, 658 (1992).
[Crossref]

J. F. de Boer, "Optical fluctuations on the transmission and reflection of mesoscopic systems," Ph.D. thesis (University of Amsterdam, 1995), www.tn.utwente.nl/cops/pdf/theses/deboer.pdf.

Feng, S.

R. Berkovits and S. Feng, Phys. Rep. 238, 135 (1994).
[Crossref]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref] [PubMed]

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref] [PubMed]

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref] [PubMed]

Garzia, N.

Genack, A. Z.

A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Nature 404, 850 (2000).
[Crossref] [PubMed]

N. Garzia and A. Z. Genack, Opt. Lett. 16, 1132 (1991).
[Crossref]

A. Z. Genack, Phys. Rev. Lett. 58, 2043 (1987).
[Crossref] [PubMed]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 1985).

Kane, C.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref] [PubMed]

Lagendijk, A.

P. Lodahl, A. P. Mosk, and A. Lagendijk, Phys. Rev. Lett. 95, 173901 (2005).
[Crossref] [PubMed]

P. Lodahl and A. Lagendijk, Phys. Rev. Lett. 94, 153905 (2005).
[Crossref] [PubMed]

I. Vellekoop, P. Lodahl, and A. Lagendijk, Phys. Rev. E 71, 056604 (2005).
[Crossref]

J. F. de Boer, M. P. van Albada, and A. Lagendijk, Phys. Rev. B 45, 658 (1992).
[Crossref]

Lee, P. A.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref] [PubMed]

Lodahl, P.

I. Vellekoop, P. Lodahl, and A. Lagendijk, Phys. Rev. E 71, 056604 (2005).
[Crossref]

P. Lodahl, A. P. Mosk, and A. Lagendijk, Phys. Rev. Lett. 95, 173901 (2005).
[Crossref] [PubMed]

P. Lodahl and A. Lagendijk, Phys. Rev. Lett. 94, 153905 (2005).
[Crossref] [PubMed]

Maret, G.

F. Scheffold and G. Maret, Phys. Rev. Lett. 81, 5800 (1998).
[Crossref]

Mosk, A. P.

P. Lodahl, A. P. Mosk, and A. Lagendijk, Phys. Rev. Lett. 95, 173901 (2005).
[Crossref] [PubMed]

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref] [PubMed]

Scheffold, F.

F. Scheffold and G. Maret, Phys. Rev. Lett. 81, 5800 (1998).
[Crossref]

Stone, A. D.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref] [PubMed]

Stoytchev, M.

A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Nature 404, 850 (2000).
[Crossref] [PubMed]

van Albada, M. P.

J. F. de Boer, M. P. van Albada, and A. Lagendijk, Phys. Rev. B 45, 658 (1992).
[Crossref]

Vellekoop, I.

I. Vellekoop, P. Lodahl, and A. Lagendijk, Phys. Rev. E 71, 056604 (2005).
[Crossref]

Nature (1)

A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Nature 404, 850 (2000).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rep. (1)

R. Berkovits and S. Feng, Phys. Rep. 238, 135 (1994).
[Crossref]

Phys. Rev. B (1)

J. F. de Boer, M. P. van Albada, and A. Lagendijk, Phys. Rev. B 45, 658 (1992).
[Crossref]

Phys. Rev. E (1)

I. Vellekoop, P. Lodahl, and A. Lagendijk, Phys. Rev. E 71, 056604 (2005).
[Crossref]

Phys. Rev. Lett. (7)

F. Scheffold and G. Maret, Phys. Rev. Lett. 81, 5800 (1998).
[Crossref]

A. Z. Genack, Phys. Rev. Lett. 58, 2043 (1987).
[Crossref] [PubMed]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref] [PubMed]

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref] [PubMed]

P. Lodahl and A. Lagendijk, Phys. Rev. Lett. 94, 153905 (2005).
[Crossref] [PubMed]

P. Lodahl, A. P. Mosk, and A. Lagendijk, Phys. Rev. Lett. 95, 173901 (2005).
[Crossref] [PubMed]

C. W. J. Beenakker, Phys. Rev. Lett. 81, 1829 (1998).
[Crossref]

Other (2)

J. W. Goodman, Statistical Optics (Wiley, 1985).

J. F. de Boer, "Optical fluctuations on the transmission and reflection of mesoscopic systems," Ph.D. thesis (University of Amsterdam, 1995), www.tn.utwente.nl/cops/pdf/theses/deboer.pdf.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(Color online) Noise correlation function for shot noise (solid curve) and classical noise (dashed curve) as a function of frequency shift.

Fig. 2
Fig. 2

(Color online) Second-order correlation function C a b II normalized to T ω ¯ as a function of frequency shift for three different quantum states of light: Fock state F a = 0 , coherent state F a = 1 , and thermal state F a = 2 . The ratios of mean free path to the sample thickness are l L = 1 3 (thick curves), l L = 1 4 (medium curves), and l L = 1 5 (thin curves).

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

C a b N ( Δ ω ) = ( Δ n ω a b ) 2 × ( Δ n ω + Δ ω a b ) 2 ¯ ( Δ n ω a b ) 2 ¯ 2 1 .
[ ( Δ n ω a b ) 2 ] Q N = n ̂ ω a T ω a b + n ̂ ω a ( F a 1 ) ( T ω a b ) 2 ,
[ ( Δ n ω a b ) 2 ] CN n ̂ ω a 2 ( T ω a b ) 2 .
C a b QN ( Δ ω ) = T ω T ω + Δ ω ¯ + ( F a 1 ) [ T ω 2 T ω + Δ ω ¯ + T ω T ω + Δ ω 2 ¯ ] + ( F a 1 ) 2 T ω 2 T ω + Δ ω 2 ¯ T ω ¯ 2 + 2 ( F a 1 ) T ω ¯ × T ω 2 ¯ + ( F a 1 ) 2 T ω 2 ¯ 2 1 ,
C a b CN ( Δ ω ) = T ω 2 T ω + Δ ω 2 ¯ T ω 2 ¯ 2 1 ,
t 1 * t k * t k + 1 t 2 k ¯ = π t 1 * t p ¯ × t 2 * t q ¯ × × t k * t r ¯ ,
T ω T ω + Δ ω ¯ = T ω ¯ 2 + t ω * t ω + Δ ω ¯ 2 ,
T ω 2 T ω + Δ ω ¯ = T ω T ω + Δ ω 2 ¯ = 2 T ω ¯ 3 + 4 T ω ¯ t ω * t ω + Δ ω ¯ 2 ,
T ω 2 T ω + Δ ω 2 ¯ = 4 T ω ¯ 4 + 16 T ω ¯ 2 t ω * t ω + Δ ω ¯ 2 + 4 t ω * t ω + Δ ω ¯ 4 ,
T ω n ¯ = n ! T ω ¯ n .
C a b SN ( Δ ω ) = t ω * t ω + Δ ω ¯ 2 T ω ¯ 2 f ( Δ ω ) ,
C a b CN ( Δ ω ) = t ω * t ω + Δ ω ¯ 4 + 4 T ω ¯ 2 t ω * t ω + Δ ω ¯ 2 T ω ¯ 4 f 2 ( Δ ω ) + 4 f ( Δ ω ) ,
f ( Δ ω ) = Δ ω ω D cosh ( Δ ω ω D ) cos ( Δ ω ω D )
T ω T ω + Δ ω ¯ = T ω ¯ 2 + t ω * t ω + Δ ω ¯ 2 + 3 L 2 2 l 2 g ( Δ ω ) T ω ¯ 3 ,
g ( Δ ω ) = ω D Δ ω × sinh ( Δ ω ω D ) sin ( Δ ω ω D ) cosh ( Δ ω ω D ) cos ( Δ ω ω D ) .
C a b Q N ( Δ ω ) C a b I ( Δ ω ) + C a b II ( Δ ω ) ,
C a b I ( Δ ω ) = f ( Δ ω ) ,
C a b II ( Δ ω ) = 3 L 2 2 l 2 g ( Δ ω ) T ω ¯ + 4 ( F a 1 ) f ( Δ ω ) T ω ¯ .

Metrics