Abstract

We have experimentally studied polarization properties of the two-dimensional coupled photonic crystal microcavity arrays and observed a strong polarization dependence of the transmission and reflection of light from the structures—effects that can be employed in building miniaturized polarizing optical components. Moreover, by combining these properties with a strong sensitivity of the coupled bands on the surrounding refractive index, we have demonstrated a detection of small refractive-index changes in the environment, which is useful for construction of biochemical sensors.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Altug and J. Vu?kovi?, Appl. Phys. Lett. 84, 161 (2004).
    [CrossRef]
  2. H. Altug and J. Vu?kovi?, Appl. Phys. Lett. 86, 111102 (2005).
    [CrossRef]
  3. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, Opt. Express 12, 1575 (2004), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  4. E. Hecht, Optics, 4th ed. (Addison-Wesley, Reading, Mass., 2001).
  5. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, Opt. Lett. 29, 1093 (2004).
    [CrossRef] [PubMed]
  6. M. Loncar, A. Scherer, and Y. Qiu, Appl. Phys. Lett. 82, 4648 (2003).
    [CrossRef]

2005

H. Altug and J. Vu?kovi?, Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

2004

2003

M. Loncar, A. Scherer, and Y. Qiu, Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

Altug, H.

H. Altug and J. Vu?kovi?, Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

H. Altug and J. Vu?kovi?, Appl. Phys. Lett. 84, 161 (2004).
[CrossRef]

Chow, E.

Fan, S.

Girolami, G.

Grot, A.

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison-Wesley, Reading, Mass., 2001).

Kilic, O.

Kim, S.

Loncar, M.

M. Loncar, A. Scherer, and Y. Qiu, Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

Lousse, V.

Mirkarimi, L. W.

Qiu, Y.

M. Loncar, A. Scherer, and Y. Qiu, Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

Scherer, A.

M. Loncar, A. Scherer, and Y. Qiu, Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

Sigalas, M.

Solgaard, O.

Suh, W.

Vuckovic, J.

H. Altug and J. Vu?kovi?, Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

H. Altug and J. Vu?kovi?, Appl. Phys. Lett. 84, 161 (2004).
[CrossRef]

Appl. Phys. Lett.

H. Altug and J. Vu?kovi?, Appl. Phys. Lett. 84, 161 (2004).
[CrossRef]

H. Altug and J. Vu?kovi?, Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

M. Loncar, A. Scherer, and Y. Qiu, Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Other

E. Hecht, Optics, 4th ed. (Addison-Wesley, Reading, Mass., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup used in testing of the polarization properties CPCRA and in sensing. BS, nonpolarizing beam splitter; PBS, polarizing beam splitter; OL, objective lens; IR-cam, infrared camera; D, detector. Rotation of the structure around the z axis is controlled by a rotation stage. (b) Scanning electron microscope pictures of the fabricated CPCRA with A = 3 a .

Fig. 2
Fig. 2

(a) Electromagnetic field pattern of the coupled x-dipole band at the Γ point and at the center of the PhC slab (field components of the y dipole are obtained by first interchanging E x and E y and then rotating all three patterns by 90°). (b) Transmission spectra of the CPCRA for the coupled x- (red, ϕ = 0 ° ) and y- (blue, ϕ = 90 ° ) dipole modes at the Γ point. (c) Reflection spectra of the CPCRA at the opposite polarization relative to the excitation, polarized at ϕ = 0 ° , 45 ° , 90 ° .

Fig. 3
Fig. 3

Peak power of the reflected signal with opposite polarization relative to the excitation as a function of input polarization angle ϕ (circles). The solid curve is a sine square function fit to the experimental data. The inset shows a unit cell of CPCRA with A = 3 a and high symmetry directions.

Fig. 4
Fig. 4

(a) Resonance wavelength as a function of the surrounding refractive index. The three data points correspond to the structure in air ( n = 1 ) , methanol ( n = 1.328 ) , and IPA ( n = 1.377 ) . The triangles and circles correspond to the experimental wavelength shifts of the x and y dipoles, respectively, and the vertical bars indicate the range of the wavelength shift expected from the FDTD simulations. (b) Reflection spectrum with opposite polarization with respect to the excitation for the structure in air. The arrows indicate the positions of the x- and y-dipole bands. (c) The same spectrum when the structure is immersed in IPA.

Metrics