Abstract

A mode-evolution-based polarization splitter suitable for high-index-contrast systems and directly integratable with a recently reported on-polarization rotator is described and its performance verified through both finite-difference time-domain and eigenmode expansion simulations. For a device length of 200μm, greater than 22dB of extinction is obtained across a 1.451.75-μm bandwidth.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Madsen, Opt. Lett. 25, 878 (2000).
    [CrossRef]
  2. M. R. Watts, “Wavelength switching and routing through evanescently induced absorption,” M.S. thesis (Massachusetts Institute of Technology, Cambridge, Mass., 2001).
  3. J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, IEEE Photonics Technol. Lett. 9, 209 (1997).
    [CrossRef]
  4. N. Goto and G. L. Yip, J. Lightwave Technol. 7, 1567 (1989).
    [CrossRef]
  5. Y. Shani, C. H. Henry, R. C. Kistler, K. J. Kazarinov, and R. F. Orlowsky, Appl. Phys. Lett. 56, 120 (1990).
    [CrossRef]
  6. J. J. G. M. van der Tol and J. H. Laarhuis, J. Lightwave Technol. 9, 879 (1991).
    [CrossRef]
  7. R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, J. Lightwave Technol. 11, 1806 (1993).
    [CrossRef]
  8. S. M. Garner, V. Chuyanov, S.-S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photonics Technol. Lett. 11, 842 (1999).
    [CrossRef]
  9. M. R. Watts, H. A. Haus, G. Gorni, and M. Cherchi, in Integrated Photonics Research, Vol. 91 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), p. 26.
  10. M. R. Watts and H. A. Haus, Opt. Lett. 30, 138 (2005).
    [CrossRef] [PubMed]
  11. A. W. Snyder, Optical Waveguide Theory (Chapman & Hall, London, 1983), pp. 553–557.
    [CrossRef]
  12. A. Taflove, Computational Electromagnetics: the Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).
  13. FIMMPROP software by Photon Design, Oxford, UK.

2005 (1)

2000 (1)

1999 (1)

S. M. Garner, V. Chuyanov, S.-S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photonics Technol. Lett. 11, 842 (1999).
[CrossRef]

1997 (1)

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, IEEE Photonics Technol. Lett. 9, 209 (1997).
[CrossRef]

1993 (1)

R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, J. Lightwave Technol. 11, 1806 (1993).
[CrossRef]

1991 (1)

J. J. G. M. van der Tol and J. H. Laarhuis, J. Lightwave Technol. 9, 879 (1991).
[CrossRef]

1990 (1)

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Kazarinov, and R. F. Orlowsky, Appl. Phys. Lett. 56, 120 (1990).
[CrossRef]

1989 (1)

N. Goto and G. L. Yip, J. Lightwave Technol. 7, 1567 (1989).
[CrossRef]

Chen, A.

S. M. Garner, V. Chuyanov, S.-S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photonics Technol. Lett. 11, 842 (1999).
[CrossRef]

Cherchi, M.

M. R. Watts, H. A. Haus, G. Gorni, and M. Cherchi, in Integrated Photonics Research, Vol. 91 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), p. 26.

Chuyanov, V.

S. M. Garner, V. Chuyanov, S.-S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photonics Technol. Lett. 11, 842 (1999).
[CrossRef]

Dalton, L. R.

S. M. Garner, V. Chuyanov, S.-S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photonics Technol. Lett. 11, 842 (1999).
[CrossRef]

de Ridder, R. M.

R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, J. Lightwave Technol. 11, 1806 (1993).
[CrossRef]

Driessen, A.

R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, J. Lightwave Technol. 11, 1806 (1993).
[CrossRef]

Fluitman, J. H. J.

R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, J. Lightwave Technol. 11, 1806 (1993).
[CrossRef]

Garner, S. M.

S. M. Garner, V. Chuyanov, S.-S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photonics Technol. Lett. 11, 842 (1999).
[CrossRef]

Gorni, G.

M. R. Watts, H. A. Haus, G. Gorni, and M. Cherchi, in Integrated Photonics Research, Vol. 91 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), p. 26.

Goto, N.

N. Goto and G. L. Yip, J. Lightwave Technol. 7, 1567 (1989).
[CrossRef]

Groen, F. H.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, IEEE Photonics Technol. Lett. 9, 209 (1997).
[CrossRef]

Haus, H. A.

M. R. Watts and H. A. Haus, Opt. Lett. 30, 138 (2005).
[CrossRef] [PubMed]

M. R. Watts, H. A. Haus, G. Gorni, and M. Cherchi, in Integrated Photonics Research, Vol. 91 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), p. 26.

Henry, C. H.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Kazarinov, and R. F. Orlowsky, Appl. Phys. Lett. 56, 120 (1990).
[CrossRef]

Kazarinov, K. J.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Kazarinov, and R. F. Orlowsky, Appl. Phys. Lett. 56, 120 (1990).
[CrossRef]

Kistler, R. C.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Kazarinov, and R. F. Orlowsky, Appl. Phys. Lett. 56, 120 (1990).
[CrossRef]

Laarhuis, J. H.

J. J. G. M. van der Tol and J. H. Laarhuis, J. Lightwave Technol. 9, 879 (1991).
[CrossRef]

Lee, S.-S.

S. M. Garner, V. Chuyanov, S.-S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photonics Technol. Lett. 11, 842 (1999).
[CrossRef]

Madsen, C. K.

Metaal, E. G.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, IEEE Photonics Technol. Lett. 9, 209 (1997).
[CrossRef]

Oei, Y. S.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, IEEE Photonics Technol. Lett. 9, 209 (1997).
[CrossRef]

Orlowsky, R. F.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Kazarinov, and R. F. Orlowsky, Appl. Phys. Lett. 56, 120 (1990).
[CrossRef]

Pedersen, J. W.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, IEEE Photonics Technol. Lett. 9, 209 (1997).
[CrossRef]

Sander, A. F. M.

R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, J. Lightwave Technol. 11, 1806 (1993).
[CrossRef]

Shani, Y.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Kazarinov, and R. F. Orlowsky, Appl. Phys. Lett. 56, 120 (1990).
[CrossRef]

Snyder, A. W.

A. W. Snyder, Optical Waveguide Theory (Chapman & Hall, London, 1983), pp. 553–557.
[CrossRef]

Steier, W. H.

S. M. Garner, V. Chuyanov, S.-S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photonics Technol. Lett. 11, 842 (1999).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electromagnetics: the Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

van der Tol, J. J. G. M.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, IEEE Photonics Technol. Lett. 9, 209 (1997).
[CrossRef]

J. J. G. M. van der Tol and J. H. Laarhuis, J. Lightwave Technol. 9, 879 (1991).
[CrossRef]

van Gaalen, J. J.-W.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, IEEE Photonics Technol. Lett. 9, 209 (1997).
[CrossRef]

Watts, M. R.

M. R. Watts and H. A. Haus, Opt. Lett. 30, 138 (2005).
[CrossRef] [PubMed]

M. R. Watts, H. A. Haus, G. Gorni, and M. Cherchi, in Integrated Photonics Research, Vol. 91 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), p. 26.

M. R. Watts, “Wavelength switching and routing through evanescently induced absorption,” M.S. thesis (Massachusetts Institute of Technology, Cambridge, Mass., 2001).

Yip, G. L.

N. Goto and G. L. Yip, J. Lightwave Technol. 7, 1567 (1989).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Kazarinov, and R. F. Orlowsky, Appl. Phys. Lett. 56, 120 (1990).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, IEEE Photonics Technol. Lett. 9, 209 (1997).
[CrossRef]

S. M. Garner, V. Chuyanov, S.-S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photonics Technol. Lett. 11, 842 (1999).
[CrossRef]

J. Lightwave Technol. (3)

N. Goto and G. L. Yip, J. Lightwave Technol. 7, 1567 (1989).
[CrossRef]

J. J. G. M. van der Tol and J. H. Laarhuis, J. Lightwave Technol. 9, 879 (1991).
[CrossRef]

R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, J. Lightwave Technol. 11, 1806 (1993).
[CrossRef]

Opt. Lett. (2)

Other (5)

M. R. Watts, “Wavelength switching and routing through evanescently induced absorption,” M.S. thesis (Massachusetts Institute of Technology, Cambridge, Mass., 2001).

M. R. Watts, H. A. Haus, G. Gorni, and M. Cherchi, in Integrated Photonics Research, Vol. 91 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), p. 26.

A. W. Snyder, Optical Waveguide Theory (Chapman & Hall, London, 1983), pp. 553–557.
[CrossRef]

A. Taflove, Computational Electromagnetics: the Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

FIMMPROP software by Photon Design, Oxford, UK.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the polarization splitter.

Fig. 2
Fig. 2

Major electric field components of the (left) TE 11 and (right) TE 21 modes at three points along the transition. At a separation of s 2 = 1.0 μ m the TE 11 mode clearly propagates in the horizontally oriented guide.

Fig. 3
Fig. 3

Major electric field components of the (left) TM 11 and (right) TM 21 modes at three points along the transition. At a separation of s 2 = 1.0 μ m shown in (c) the TM 11 mode clearly propagates in the vertically oriented guide.

Fig. 4
Fig. 4

(a) FDTD (points) and EME (solid curves) simulations as a function of device length and (b) FDTD-determined wavelength dependence for a 200 - μ m -long device.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

κ ( z ) = ω 4 δ β ( z ) A e m * ( x , y , z ) e n ( x , y , z ) d d z ε ( z ) d A ,
P m 2 κ ¯ δ β ¯ 2 [ 1 cos ( δ β ¯ z ) ] ,

Metrics