Abstract

We present a new technique for light scanning by use of viscoelastic-based deformable phase diffraction gratings. Mechanical stretching of the grating permits control of its spatial period, and thus the orders of diffraction can be spatially deflected. In the experiments the viscoelastic gratings with triangular and rectangular profiles have been characterized at λ=633nm. It is demonstrated that the reversible elongation can exceed 20% of the initial length. For the triangular profile grating, the diffraction angle of the first order changed from 6.6° to 5.4° while the diffraction efficiency remained almost constant at 17%. Dynamic scanning of a laser beam at frequencies of 1kHz is demonstrated by use of electromechanically driven viscoelastic gratings.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 2002), Chaps. 8 and 11.
  2. M. Bass, ed., Handbook of Optics (McGraw-Hill, New York, 1995), Vol. I, Chap. 3; Vol. II, Chap. 19.
  3. G. D. Goodno and R. J. D. Miller, Chem. Phys. 103, 10619 (1999).
    [CrossRef]
  4. A. A. Maznev, K. A. Nelson, and A. Rogers, Opt. Lett. 23, 1319 (1998).
    [CrossRef]
  5. A. A. Maznev, T. F. Crimmins, and K. A. Nelson, Opt. Lett. 23, 1378 (1998).
    [CrossRef]
  6. G. F. Marshall, ed., Laser Beam Scanning: Opto-Mechanical Devices, Systems, and Data Storage Optics (Marcel Dekker, New York, 1985).
  7. G. F. Marshall, ed., Optical Scanning (Marcel Dekker, New York, 1991).
  8. U. Efron, ed., Spatial Light Modulators: Materials, Devices and Systems (Marcel Dekker, New York, 1995).
  9. S. Sakarya, “Micromachining techniques for fabrication of integrated light modulating devices,’’ Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands, 2003).
  10. W. Henke, W. Hoppe, H. J. Quenzer, P. Staudt-Fischbach, and B. Wagner, in Proceedings of IEEE Workshop on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 205–210.
  11. K. Reimer, Micro-Optics, Diffractive Elements, Fraunhofer Institute for Silicon Technologyhttp://www.isit.fhg.de/.
  12. Dow Corning Corporation, Product Ref. 10-898E-01 (Dow Corning Corporation, location, Midland, Michigan, 2005); http://www.dowcorning.com/DataFiles/090007b5802e2039.pdf/.
  13. S. Ahmed and E. N. Glytsis, Appl. Opt. 35, 4426 (1996).
    [CrossRef] [PubMed]
  14. A. A. Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, IEEE J. Sel. Top. Quantum Electron. 5, 75 (1999).
    [CrossRef]
  15. K. Hosokawa, K. Hanada, and R. Maeda, J. Micromech. Microeng. 12, 1 (2002).
    [CrossRef]

2002

K. Hosokawa, K. Hanada, and R. Maeda, J. Micromech. Microeng. 12, 1 (2002).
[CrossRef]

1999

A. A. Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, IEEE J. Sel. Top. Quantum Electron. 5, 75 (1999).
[CrossRef]

G. D. Goodno and R. J. D. Miller, Chem. Phys. 103, 10619 (1999).
[CrossRef]

1998

1996

Ahmed, S.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 2002), Chaps. 8 and 11.

Crimmins, T. F.

Glytsis, E. N.

Goodno, G. D.

G. D. Goodno and R. J. D. Miller, Chem. Phys. 103, 10619 (1999).
[CrossRef]

Hanada, K.

K. Hosokawa, K. Hanada, and R. Maeda, J. Micromech. Microeng. 12, 1 (2002).
[CrossRef]

Henke, W.

W. Henke, W. Hoppe, H. J. Quenzer, P. Staudt-Fischbach, and B. Wagner, in Proceedings of IEEE Workshop on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 205–210.

Hoppe, W.

W. Henke, W. Hoppe, H. J. Quenzer, P. Staudt-Fischbach, and B. Wagner, in Proceedings of IEEE Workshop on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 205–210.

Hosokawa, K.

K. Hosokawa, K. Hanada, and R. Maeda, J. Micromech. Microeng. 12, 1 (2002).
[CrossRef]

Maeda, R.

K. Hosokawa, K. Hanada, and R. Maeda, J. Micromech. Microeng. 12, 1 (2002).
[CrossRef]

Maznev, A. A.

Mehregany, M.

A. A. Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, IEEE J. Sel. Top. Quantum Electron. 5, 75 (1999).
[CrossRef]

Merat, F. L.

A. A. Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, IEEE J. Sel. Top. Quantum Electron. 5, 75 (1999).
[CrossRef]

Miller, R. J. D.

G. D. Goodno and R. J. D. Miller, Chem. Phys. 103, 10619 (1999).
[CrossRef]

Nelson, K. A.

Quenzer, H. J.

W. Henke, W. Hoppe, H. J. Quenzer, P. Staudt-Fischbach, and B. Wagner, in Proceedings of IEEE Workshop on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 205–210.

Reimer, K.

K. Reimer, Micro-Optics, Diffractive Elements, Fraunhofer Institute for Silicon Technologyhttp://www.isit.fhg.de/.

Rogers, A.

Sakarya, S.

S. Sakarya, “Micromachining techniques for fabrication of integrated light modulating devices,’’ Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands, 2003).

Smith, S. W.

A. A. Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, IEEE J. Sel. Top. Quantum Electron. 5, 75 (1999).
[CrossRef]

Staudt-Fischbach, P.

W. Henke, W. Hoppe, H. J. Quenzer, P. Staudt-Fischbach, and B. Wagner, in Proceedings of IEEE Workshop on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 205–210.

Wagner, B.

W. Henke, W. Hoppe, H. J. Quenzer, P. Staudt-Fischbach, and B. Wagner, in Proceedings of IEEE Workshop on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 205–210.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 2002), Chaps. 8 and 11.

Yasseen, A. A.

A. A. Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, IEEE J. Sel. Top. Quantum Electron. 5, 75 (1999).
[CrossRef]

Appl. Opt.

Chem. Phys.

G. D. Goodno and R. J. D. Miller, Chem. Phys. 103, 10619 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. A. Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, IEEE J. Sel. Top. Quantum Electron. 5, 75 (1999).
[CrossRef]

J. Micromech. Microeng.

K. Hosokawa, K. Hanada, and R. Maeda, J. Micromech. Microeng. 12, 1 (2002).
[CrossRef]

Opt. Lett.

Other

G. F. Marshall, ed., Laser Beam Scanning: Opto-Mechanical Devices, Systems, and Data Storage Optics (Marcel Dekker, New York, 1985).

G. F. Marshall, ed., Optical Scanning (Marcel Dekker, New York, 1991).

U. Efron, ed., Spatial Light Modulators: Materials, Devices and Systems (Marcel Dekker, New York, 1995).

S. Sakarya, “Micromachining techniques for fabrication of integrated light modulating devices,’’ Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands, 2003).

W. Henke, W. Hoppe, H. J. Quenzer, P. Staudt-Fischbach, and B. Wagner, in Proceedings of IEEE Workshop on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 205–210.

K. Reimer, Micro-Optics, Diffractive Elements, Fraunhofer Institute for Silicon Technologyhttp://www.isit.fhg.de/.

Dow Corning Corporation, Product Ref. 10-898E-01 (Dow Corning Corporation, location, Midland, Michigan, 2005); http://www.dowcorning.com/DataFiles/090007b5802e2039.pdf/.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 2002), Chaps. 8 and 11.

M. Bass, ed., Handbook of Optics (McGraw-Hill, New York, 1995), Vol. I, Chap. 3; Vol. II, Chap. 19.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Spatial spectra of light diffracted by (a) the unstretched l = 18.68 mm and (b) the stretched l = 22.03 mm VD grating with a rectangular profile.

Fig. 3
Fig. 3

Interferograms of the VD grating (in the 0th order) in (1) the normal state, l = 18.68 mm and (2) under stretch, l = 22.03 mm . Similarly, (3) and (4) are interferograms for the 1st order of diffraction.

Fig. 4
Fig. 4

Frequency response of the electromechanically driven VD grating.

Metrics