Abstract

Transfer of intensity noise from pumps to signal in dual-pump fiber-optic parametric amplifiers is simulated numerically for a realistic configuration in which both pumps are amplified and filtered before they enter the fiber. The walk-off effects induced by different group velocities of pumps, signal, and idler are fully taken into account. It is found that the optical signal-to-noise ratio can be as low as 15dB when the amplifier length is close to 0.5km, but it can be improved by 3dB or so by use of longer fibers.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
    [CrossRef]
  2. M. N. Islam and Ö. Boyraz, IEEE J. Sel. Top. Quantum Electron. 8, 527 (2002).
    [CrossRef]
  3. T. Tanemura and K. Kikuchi, IEEE Photonics Technol. Lett. 15, 1573 (2003).
    [CrossRef]
  4. P. L. Voss and P. Kumar, Opt. Lett. 29, 445 (2004).
    [CrossRef] [PubMed]
  5. K. K. Y. Wong, K. Shimizu, M. E. Marhic, K. Uesaka, G. Kalogerakis, and L. G. Kazovsky, Opt. Lett. 28, 692 (2003).
    [CrossRef] [PubMed]
  6. J. L. Blows and S. E. French, Opt. Lett. 27, 491 (2002).
    [CrossRef]
  7. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, Electron. Lett. 39, 838 (2003).
    [CrossRef]
  8. C. R. S. Fludger and V. Handerek, J. Lightwave Technol. 19, 1140 (2001).
    [CrossRef]
  9. P. Kylemark, P. O. Hedekvist, H. Sunnerud, M. Karlsson, and P. A. Andrekson, J. Lightwave Technol. 22, 409 (2004).
    [CrossRef]
  10. G. Kalogerakis, M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper CFA5.
  11. F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, IEEE Photonics Technol. Lett. 16, 1292 (2004).
    [CrossRef]
  12. F. Yaman, Q. Lin, and G. P. Agrawal, IEEE Photonics Technol. Lett. 16, 431 (2004).
    [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001), Chap. 10.

2004 (4)

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, IEEE Photonics Technol. Lett. 16, 1292 (2004).
[CrossRef]

F. Yaman, Q. Lin, and G. P. Agrawal, IEEE Photonics Technol. Lett. 16, 431 (2004).
[CrossRef]

P. L. Voss and P. Kumar, Opt. Lett. 29, 445 (2004).
[CrossRef] [PubMed]

P. Kylemark, P. O. Hedekvist, H. Sunnerud, M. Karlsson, and P. A. Andrekson, J. Lightwave Technol. 22, 409 (2004).
[CrossRef]

2003 (3)

K. K. Y. Wong, K. Shimizu, M. E. Marhic, K. Uesaka, G. Kalogerakis, and L. G. Kazovsky, Opt. Lett. 28, 692 (2003).
[CrossRef] [PubMed]

T. Tanemura and K. Kikuchi, IEEE Photonics Technol. Lett. 15, 1573 (2003).
[CrossRef]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, Electron. Lett. 39, 838 (2003).
[CrossRef]

2002 (3)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[CrossRef]

M. N. Islam and Ö. Boyraz, IEEE J. Sel. Top. Quantum Electron. 8, 527 (2002).
[CrossRef]

J. L. Blows and S. E. French, Opt. Lett. 27, 491 (2002).
[CrossRef]

2001 (1)

Agrawal, G. P.

F. Yaman, Q. Lin, and G. P. Agrawal, IEEE Photonics Technol. Lett. 16, 431 (2004).
[CrossRef]

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, IEEE Photonics Technol. Lett. 16, 1292 (2004).
[CrossRef]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, Electron. Lett. 39, 838 (2003).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001), Chap. 10.

Andrekson, P. A.

P. Kylemark, P. O. Hedekvist, H. Sunnerud, M. Karlsson, and P. A. Andrekson, J. Lightwave Technol. 22, 409 (2004).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[CrossRef]

Blows, J. L.

Boyraz, Ö.

M. N. Islam and Ö. Boyraz, IEEE J. Sel. Top. Quantum Electron. 8, 527 (2002).
[CrossRef]

Centanni, J. C.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, Electron. Lett. 39, 838 (2003).
[CrossRef]

Fludger, C. R. S.

French, S. E.

Handerek, V.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[CrossRef]

Hedekvist, P. O.

P. Kylemark, P. O. Hedekvist, H. Sunnerud, M. Karlsson, and P. A. Andrekson, J. Lightwave Technol. 22, 409 (2004).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[CrossRef]

Islam, M. N.

M. N. Islam and Ö. Boyraz, IEEE J. Sel. Top. Quantum Electron. 8, 527 (2002).
[CrossRef]

Jopson, R. M.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, Electron. Lett. 39, 838 (2003).
[CrossRef]

Kalogerakis, G.

K. K. Y. Wong, K. Shimizu, M. E. Marhic, K. Uesaka, G. Kalogerakis, and L. G. Kazovsky, Opt. Lett. 28, 692 (2003).
[CrossRef] [PubMed]

G. Kalogerakis, M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper CFA5.

Karlsson, M.

Kazovsky, L. G.

K. K. Y. Wong, K. Shimizu, M. E. Marhic, K. Uesaka, G. Kalogerakis, and L. G. Kazovsky, Opt. Lett. 28, 692 (2003).
[CrossRef] [PubMed]

G. Kalogerakis, M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper CFA5.

Kikuchi, K.

T. Tanemura and K. Kikuchi, IEEE Photonics Technol. Lett. 15, 1573 (2003).
[CrossRef]

Kumar, P.

Kylemark, P.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[CrossRef]

Lin, Q.

F. Yaman, Q. Lin, and G. P. Agrawal, IEEE Photonics Technol. Lett. 16, 431 (2004).
[CrossRef]

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, IEEE Photonics Technol. Lett. 16, 1292 (2004).
[CrossRef]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, Electron. Lett. 39, 838 (2003).
[CrossRef]

Marhic, M. E.

K. K. Y. Wong, K. Shimizu, M. E. Marhic, K. Uesaka, G. Kalogerakis, and L. G. Kazovsky, Opt. Lett. 28, 692 (2003).
[CrossRef] [PubMed]

G. Kalogerakis, M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper CFA5.

McKinstrie, C. J.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, Electron. Lett. 39, 838 (2003).
[CrossRef]

Radic, S.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, IEEE Photonics Technol. Lett. 16, 1292 (2004).
[CrossRef]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, Electron. Lett. 39, 838 (2003).
[CrossRef]

Shimizu, K.

Sunnerud, H.

Tanemura, T.

T. Tanemura and K. Kikuchi, IEEE Photonics Technol. Lett. 15, 1573 (2003).
[CrossRef]

Uesaka, K.

Voss, P. L.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[CrossRef]

Wong, K. K. Y.

K. K. Y. Wong, K. Shimizu, M. E. Marhic, K. Uesaka, G. Kalogerakis, and L. G. Kazovsky, Opt. Lett. 28, 692 (2003).
[CrossRef] [PubMed]

G. Kalogerakis, M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper CFA5.

Yaman, F.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, IEEE Photonics Technol. Lett. 16, 1292 (2004).
[CrossRef]

F. Yaman, Q. Lin, and G. P. Agrawal, IEEE Photonics Technol. Lett. 16, 431 (2004).
[CrossRef]

Electron. Lett. (1)

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, Electron. Lett. 39, 838 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[CrossRef]

M. N. Islam and Ö. Boyraz, IEEE J. Sel. Top. Quantum Electron. 8, 527 (2002).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

T. Tanemura and K. Kikuchi, IEEE Photonics Technol. Lett. 15, 1573 (2003).
[CrossRef]

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, IEEE Photonics Technol. Lett. 16, 1292 (2004).
[CrossRef]

F. Yaman, Q. Lin, and G. P. Agrawal, IEEE Photonics Technol. Lett. 16, 431 (2004).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Lett. (3)

Other (2)

G. Kalogerakis, M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper CFA5.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

RIN spectral density as a function of noise frequency at three signal wavelengths. The dashed curve shows for comparison the pump RIN spectrum.

Fig. 2
Fig. 2

F r for the same three signal wavelengths shown in Fig. 1. The inset shows σ R as a function of signal wavelength (filled circles) and the theoretical fit assuming that σ R scales inversely with τ w (solid curve).

Fig. 3
Fig. 3

Optical SNR as a function of filter bandwidth for FOPA lengths of 0.5, 1, and 2 km . The signal is at 1555 nm . All other parameters are identical to those used for Fig. 1.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ w 1 2 β 3 L ( ω 1 ω 3 ) ( ω 2 ω 3 ) ,
A k z + 1 v g k A k t + i d k 2 2 A k t 2 = i β ( ω k ) A k + i γ ( A k 2 + 2 A 3 k 2 ) A k ,
A j z + 1 v g j A j t + i d j 2 2 A j t 2 = i β ( ω j ) A j + 2 i γ ( A 1 2 + A 2 2 ) A j + 2 i γ A 1 A 2 A 7 j * ,
RIN s ( ω , L ) = P 3 2 δ P 3 ( t ) δ P 3 ( t + τ ) exp ( i ω τ ) d τ ,
F r ( ω ) = RIN s ( ω , L ) RIN p ( ω , 0 ) ,

Metrics