Abstract

Impulsive stimulated Raman scattering is used to generate and control coherent phonons and other low-frequency modes. In transparent materials, pump–probe experiments are usually performed by spectrally resolving the probe beam and measuring the spectral shift as a function of pump–probe time delay. By measuring the optical phase of the probe pulse as a function of time delay, we find that the phonon signal can be increased by a factor (Ωδ)1, where Ω is the phonon frequency and δ is the pulse duration.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-X. Yan, E. B. J. Gamble, and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
    [CrossRef]
  2. L. Dhar, J. A. Rogers, and K. A. Nelson, Chem. Rev. (Washington, D.C.) 94, 157 (1994).
    [CrossRef]
  3. R. Merlin, Solid State Commun. 102, 207 (1997).
    [CrossRef]
  4. C. Aku-Leh, J. Zhao, R. Merlin, J. Menendez, and M. Cardona, “Long-lived optical phonons in ZnO studied with impulsive stimulated Raman scattering,” arXiv.org eprint archive, cond-mat/0406686, June 28, 2004.
  5. M. Cho, M. Du, N. F. Scherer, G. R. Fleming, and S. Mukamel, J. Chem. Phys. 99, 2410 (1993).
    [CrossRef]
  6. P. Voehringer and N. F. Scherer, J. Phys. Chem. 99, 2684 (1995).
    [CrossRef]
  7. T. F. Crimmins, N. S. Stoyanov, and K. A. Nelson, J. Chem. Phys. 117, 2882 (2002).
    [CrossRef]
  8. Y. Liu, A. Frenkel, G. A. Garrett, J. F. Whitaker, S. Fahy, C. Uher, and R. Merlin, Phys. Rev. Lett. 75, 334 (1995).
    [CrossRef] [PubMed]
  9. G. A. Garrett, A. G. Rojo, A. K. Sood, J. F. Whitaker, and R. Merlin, Science 275, 1638 (1997).
    [CrossRef] [PubMed]
  10. M. Couzi, J. R. Vignalou, and G. Boulon, Solid State Commun. 20, 461 (1976).
    [CrossRef]

2002 (1)

T. F. Crimmins, N. S. Stoyanov, and K. A. Nelson, J. Chem. Phys. 117, 2882 (2002).
[CrossRef]

1997 (2)

G. A. Garrett, A. G. Rojo, A. K. Sood, J. F. Whitaker, and R. Merlin, Science 275, 1638 (1997).
[CrossRef] [PubMed]

R. Merlin, Solid State Commun. 102, 207 (1997).
[CrossRef]

1995 (2)

Y. Liu, A. Frenkel, G. A. Garrett, J. F. Whitaker, S. Fahy, C. Uher, and R. Merlin, Phys. Rev. Lett. 75, 334 (1995).
[CrossRef] [PubMed]

P. Voehringer and N. F. Scherer, J. Phys. Chem. 99, 2684 (1995).
[CrossRef]

1994 (1)

L. Dhar, J. A. Rogers, and K. A. Nelson, Chem. Rev. (Washington, D.C.) 94, 157 (1994).
[CrossRef]

1993 (1)

M. Cho, M. Du, N. F. Scherer, G. R. Fleming, and S. Mukamel, J. Chem. Phys. 99, 2410 (1993).
[CrossRef]

1985 (1)

Y.-X. Yan, E. B. J. Gamble, and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
[CrossRef]

1976 (1)

M. Couzi, J. R. Vignalou, and G. Boulon, Solid State Commun. 20, 461 (1976).
[CrossRef]

Boulon, G.

M. Couzi, J. R. Vignalou, and G. Boulon, Solid State Commun. 20, 461 (1976).
[CrossRef]

Cho, M.

M. Cho, M. Du, N. F. Scherer, G. R. Fleming, and S. Mukamel, J. Chem. Phys. 99, 2410 (1993).
[CrossRef]

Couzi, M.

M. Couzi, J. R. Vignalou, and G. Boulon, Solid State Commun. 20, 461 (1976).
[CrossRef]

Crimmins, T. F.

T. F. Crimmins, N. S. Stoyanov, and K. A. Nelson, J. Chem. Phys. 117, 2882 (2002).
[CrossRef]

Dhar, L.

L. Dhar, J. A. Rogers, and K. A. Nelson, Chem. Rev. (Washington, D.C.) 94, 157 (1994).
[CrossRef]

Du, M.

M. Cho, M. Du, N. F. Scherer, G. R. Fleming, and S. Mukamel, J. Chem. Phys. 99, 2410 (1993).
[CrossRef]

Fahy, S.

Y. Liu, A. Frenkel, G. A. Garrett, J. F. Whitaker, S. Fahy, C. Uher, and R. Merlin, Phys. Rev. Lett. 75, 334 (1995).
[CrossRef] [PubMed]

Fleming, G. R.

M. Cho, M. Du, N. F. Scherer, G. R. Fleming, and S. Mukamel, J. Chem. Phys. 99, 2410 (1993).
[CrossRef]

Frenkel, A.

Y. Liu, A. Frenkel, G. A. Garrett, J. F. Whitaker, S. Fahy, C. Uher, and R. Merlin, Phys. Rev. Lett. 75, 334 (1995).
[CrossRef] [PubMed]

Gamble, E. B. J.

Y.-X. Yan, E. B. J. Gamble, and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
[CrossRef]

Garrett, G. A.

G. A. Garrett, A. G. Rojo, A. K. Sood, J. F. Whitaker, and R. Merlin, Science 275, 1638 (1997).
[CrossRef] [PubMed]

Y. Liu, A. Frenkel, G. A. Garrett, J. F. Whitaker, S. Fahy, C. Uher, and R. Merlin, Phys. Rev. Lett. 75, 334 (1995).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, A. Frenkel, G. A. Garrett, J. F. Whitaker, S. Fahy, C. Uher, and R. Merlin, Phys. Rev. Lett. 75, 334 (1995).
[CrossRef] [PubMed]

Merlin, R.

R. Merlin, Solid State Commun. 102, 207 (1997).
[CrossRef]

G. A. Garrett, A. G. Rojo, A. K. Sood, J. F. Whitaker, and R. Merlin, Science 275, 1638 (1997).
[CrossRef] [PubMed]

Y. Liu, A. Frenkel, G. A. Garrett, J. F. Whitaker, S. Fahy, C. Uher, and R. Merlin, Phys. Rev. Lett. 75, 334 (1995).
[CrossRef] [PubMed]

Mukamel, S.

M. Cho, M. Du, N. F. Scherer, G. R. Fleming, and S. Mukamel, J. Chem. Phys. 99, 2410 (1993).
[CrossRef]

Nelson, K. A.

T. F. Crimmins, N. S. Stoyanov, and K. A. Nelson, J. Chem. Phys. 117, 2882 (2002).
[CrossRef]

L. Dhar, J. A. Rogers, and K. A. Nelson, Chem. Rev. (Washington, D.C.) 94, 157 (1994).
[CrossRef]

Y.-X. Yan, E. B. J. Gamble, and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
[CrossRef]

Rogers, J. A.

L. Dhar, J. A. Rogers, and K. A. Nelson, Chem. Rev. (Washington, D.C.) 94, 157 (1994).
[CrossRef]

Rojo, A. G.

G. A. Garrett, A. G. Rojo, A. K. Sood, J. F. Whitaker, and R. Merlin, Science 275, 1638 (1997).
[CrossRef] [PubMed]

Scherer, N. F.

P. Voehringer and N. F. Scherer, J. Phys. Chem. 99, 2684 (1995).
[CrossRef]

M. Cho, M. Du, N. F. Scherer, G. R. Fleming, and S. Mukamel, J. Chem. Phys. 99, 2410 (1993).
[CrossRef]

Sood, A. K.

G. A. Garrett, A. G. Rojo, A. K. Sood, J. F. Whitaker, and R. Merlin, Science 275, 1638 (1997).
[CrossRef] [PubMed]

Stoyanov, N. S.

T. F. Crimmins, N. S. Stoyanov, and K. A. Nelson, J. Chem. Phys. 117, 2882 (2002).
[CrossRef]

Uher, C.

Y. Liu, A. Frenkel, G. A. Garrett, J. F. Whitaker, S. Fahy, C. Uher, and R. Merlin, Phys. Rev. Lett. 75, 334 (1995).
[CrossRef] [PubMed]

Vignalou, J. R.

M. Couzi, J. R. Vignalou, and G. Boulon, Solid State Commun. 20, 461 (1976).
[CrossRef]

Voehringer, P.

P. Voehringer and N. F. Scherer, J. Phys. Chem. 99, 2684 (1995).
[CrossRef]

Whitaker, J. F.

G. A. Garrett, A. G. Rojo, A. K. Sood, J. F. Whitaker, and R. Merlin, Science 275, 1638 (1997).
[CrossRef] [PubMed]

Y. Liu, A. Frenkel, G. A. Garrett, J. F. Whitaker, S. Fahy, C. Uher, and R. Merlin, Phys. Rev. Lett. 75, 334 (1995).
[CrossRef] [PubMed]

Yan, Y.-X.

Y.-X. Yan, E. B. J. Gamble, and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

L. Dhar, J. A. Rogers, and K. A. Nelson, Chem. Rev. (Washington, D.C.) 94, 157 (1994).
[CrossRef]

J. Chem. Phys. (3)

M. Cho, M. Du, N. F. Scherer, G. R. Fleming, and S. Mukamel, J. Chem. Phys. 99, 2410 (1993).
[CrossRef]

T. F. Crimmins, N. S. Stoyanov, and K. A. Nelson, J. Chem. Phys. 117, 2882 (2002).
[CrossRef]

Y.-X. Yan, E. B. J. Gamble, and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
[CrossRef]

J. Phys. Chem. (1)

P. Voehringer and N. F. Scherer, J. Phys. Chem. 99, 2684 (1995).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Liu, A. Frenkel, G. A. Garrett, J. F. Whitaker, S. Fahy, C. Uher, and R. Merlin, Phys. Rev. Lett. 75, 334 (1995).
[CrossRef] [PubMed]

Science (1)

G. A. Garrett, A. G. Rojo, A. K. Sood, J. F. Whitaker, and R. Merlin, Science 275, 1638 (1997).
[CrossRef] [PubMed]

Solid State Commun. (2)

M. Couzi, J. R. Vignalou, and G. Boulon, Solid State Commun. 20, 461 (1976).
[CrossRef]

R. Merlin, Solid State Commun. 102, 207 (1997).
[CrossRef]

Other (1)

C. Aku-Leh, J. Zhao, R. Merlin, J. Menendez, and M. Cardona, “Long-lived optical phonons in ZnO studied with impulsive stimulated Raman scattering,” arXiv.org eprint archive, cond-mat/0406686, June 28, 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Phase-resolved experimental setup: AOMs, acousto-optic modulators; PBS, polarizing beam splitter; SBC, Soleil–Babinet compensator.

Fig. 2
Fig. 2

Experimental results: (a) pump–probe data for the three samples using the A, phase-sensitive and B, spectrally filtered techniques. (b) Ratio of the phase-sensitive to the spectrally filtered amplitudes as a function of phonon frequency. The symbols are experimental points: La Al O 3 (square), BGO (circles), and K Ta O 3 (triangle). The dashed curve is the theoretical prediction using filter function H ( ω ) shown in the inset (solid curve). The inset also shows the probe spectrum before (dashed curve) and after (dotted curve) the filter.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

e ( u ) = e 0 ( u ) 2 π L c n g u [ δ χ ( u + τ ) e 0 ( u ) ] ,
G ( ω ) = G 0 ( ω ) ω κ [ exp ( i Ω τ ) G 0 ( ω Ω ) exp ( i Ω τ ) G 0 ( ω + Ω ) ] ,
G ( ω ) 2 G 0 ( ω ) 2 2 ω κ Ω cos ( Ω τ ) d G 0 ( ω ) 2 d ω .
0 [ G ( ω ) 2 G 0 ( ω ) 2 ] H ( ω ) d ω 0 G 0 ( ω ) 2 H ( ω ) d ω
= 2 κ Ω cos ( Ω τ ) 0 ω d G 0 ( ω ) 2 d ω H ( ω ) d ω 0 G 0 ( ω ) 2 H ( ω ) d ω ,
V 0 [ G ( ω ) exp ( i α ) + G 0 ( ω ) 2 2 G 0 ( ω ) 2 ] d ω 2 0 G 0 ( ω ) 2 d ω ,
G ( ω ) G 0 ( ω ) exp [ 2 i κ ω sin ( Ω τ ) ] .
V 2 π L ω 0 c n χ Q Q 0 sin ( Ω τ ) .
2 2 π L Ω δ ω 0 Q 0 c n χ Q cos ( Ω τ ) .
V π Ω δ 2 = 2.08 V Ω δ FWHM .

Metrics