Abstract

We report the design of a monolithic piezoelectrically actuated microelectromechanical tunable vertical-cavity surface-emitting laser (VCSEL). The main advantages of piezoelectric actuation compared with conventional capacitive techniques are improved wavelength control, reduced external and tilt losses, and lower power supply voltages. The details of the piezoelectric actuation scheme for a 980-nm VCSEL with a variable air gap are described. A tuning range of 35nm can theoretically be achieved with a 3-V power supply (2× reduction from that of electrostatic actuation) by use of a 250-μm-long cantilever beam. The proposed actuation mechanism is insensitive to the pull-in phenomenon, therefore improving wavelength control and reducing threshold current. Drastic improvements in power efficiency make it ideal for low-power applications such as all-optical communication, chip-scale atomic clocks, and biological studies.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 6, 978 (2000).
    [CrossRef]
  2. M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 8, 98 (1996).
    [CrossRef]
  3. E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, Electron. Lett. 31, 228 (1995).
    [CrossRef]
  4. C. F. R. Mateus, J.-S. P. Hung, C. J. Chang-Hasnain, B. Cunningham, P. Li, H. Yao, G. Hasnain, C. Kuo, and A. Liao, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 2–3.
  5. M. Y. Li, W. P. Yuen, G. S. Li, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 10, 18 (1998).
    [CrossRef]
  6. C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 14, 819 (2002).
    [CrossRef]
  7. J. Soderkvist and K. Hjort, J. Micromech. Microeng. 4, 28 (1994).
    [CrossRef]
  8. E. C. Vail, G. S. Li, W. P. Yuen, and C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 3, 691 (1997).
    [CrossRef]
  9. M. S. Weinberg, J. Microelectromech. Syst. 8, 529 (1999).
    [CrossRef]
  10. S. Ramo, J. Whinnery, and T. VanDuzer, Fields and Waves in Communication (Wiley, New York, 1984).

2002 (1)

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 14, 819 (2002).
[CrossRef]

2000 (1)

C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 6, 978 (2000).
[CrossRef]

1999 (1)

M. S. Weinberg, J. Microelectromech. Syst. 8, 529 (1999).
[CrossRef]

1998 (1)

M. Y. Li, W. P. Yuen, G. S. Li, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 10, 18 (1998).
[CrossRef]

1997 (1)

E. C. Vail, G. S. Li, W. P. Yuen, and C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 3, 691 (1997).
[CrossRef]

1996 (1)

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 8, 98 (1996).
[CrossRef]

1995 (1)

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, Electron. Lett. 31, 228 (1995).
[CrossRef]

1994 (1)

J. Soderkvist and K. Hjort, J. Micromech. Microeng. 4, 28 (1994).
[CrossRef]

Chang, C.-H.

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 14, 819 (2002).
[CrossRef]

Chang-Hasnain, C. J.

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 14, 819 (2002).
[CrossRef]

C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 6, 978 (2000).
[CrossRef]

M. Y. Li, W. P. Yuen, G. S. Li, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 10, 18 (1998).
[CrossRef]

E. C. Vail, G. S. Li, W. P. Yuen, and C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 3, 691 (1997).
[CrossRef]

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 8, 98 (1996).
[CrossRef]

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, Electron. Lett. 31, 228 (1995).
[CrossRef]

C. F. R. Mateus, J.-S. P. Hung, C. J. Chang-Hasnain, B. Cunningham, P. Li, H. Yao, G. Hasnain, C. Kuo, and A. Liao, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 2–3.

Chrostowski, L.

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 14, 819 (2002).
[CrossRef]

Cunningham, B.

C. F. R. Mateus, J.-S. P. Hung, C. J. Chang-Hasnain, B. Cunningham, P. Li, H. Yao, G. Hasnain, C. Kuo, and A. Liao, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 2–3.

Eng, L.

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, Electron. Lett. 31, 228 (1995).
[CrossRef]

Hasnain, G.

C. F. R. Mateus, J.-S. P. Hung, C. J. Chang-Hasnain, B. Cunningham, P. Li, H. Yao, G. Hasnain, C. Kuo, and A. Liao, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 2–3.

Hjort, K.

J. Soderkvist and K. Hjort, J. Micromech. Microeng. 4, 28 (1994).
[CrossRef]

Hung, J.-S. P.

C. F. R. Mateus, J.-S. P. Hung, C. J. Chang-Hasnain, B. Cunningham, P. Li, H. Yao, G. Hasnain, C. Kuo, and A. Liao, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 2–3.

Kuo, C.

C. F. R. Mateus, J.-S. P. Hung, C. J. Chang-Hasnain, B. Cunningham, P. Li, H. Yao, G. Hasnain, C. Kuo, and A. Liao, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 2–3.

Li, G. S.

M. Y. Li, W. P. Yuen, G. S. Li, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 10, 18 (1998).
[CrossRef]

E. C. Vail, G. S. Li, W. P. Yuen, and C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 3, 691 (1997).
[CrossRef]

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 8, 98 (1996).
[CrossRef]

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, Electron. Lett. 31, 228 (1995).
[CrossRef]

Li, M. Y.

M. Y. Li, W. P. Yuen, G. S. Li, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 10, 18 (1998).
[CrossRef]

Li, P.

C. F. R. Mateus, J.-S. P. Hung, C. J. Chang-Hasnain, B. Cunningham, P. Li, H. Yao, G. Hasnain, C. Kuo, and A. Liao, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 2–3.

Liao, A.

C. F. R. Mateus, J.-S. P. Hung, C. J. Chang-Hasnain, B. Cunningham, P. Li, H. Yao, G. Hasnain, C. Kuo, and A. Liao, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 2–3.

Mateus, C. F. R.

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 14, 819 (2002).
[CrossRef]

C. F. R. Mateus, J.-S. P. Hung, C. J. Chang-Hasnain, B. Cunningham, P. Li, H. Yao, G. Hasnain, C. Kuo, and A. Liao, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 2–3.

Pathak, R.

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 14, 819 (2002).
[CrossRef]

Ramo, S.

S. Ramo, J. Whinnery, and T. VanDuzer, Fields and Waves in Communication (Wiley, New York, 1984).

Soderkvist, J.

J. Soderkvist and K. Hjort, J. Micromech. Microeng. 4, 28 (1994).
[CrossRef]

Sun, D.

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 14, 819 (2002).
[CrossRef]

Vail, E. C.

E. C. Vail, G. S. Li, W. P. Yuen, and C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 3, 691 (1997).
[CrossRef]

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 8, 98 (1996).
[CrossRef]

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, Electron. Lett. 31, 228 (1995).
[CrossRef]

VanDuzer, T.

S. Ramo, J. Whinnery, and T. VanDuzer, Fields and Waves in Communication (Wiley, New York, 1984).

Weinberg, M. S.

M. S. Weinberg, J. Microelectromech. Syst. 8, 529 (1999).
[CrossRef]

Whinnery, J.

S. Ramo, J. Whinnery, and T. VanDuzer, Fields and Waves in Communication (Wiley, New York, 1984).

Wu, M. S.

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 8, 98 (1996).
[CrossRef]

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, Electron. Lett. 31, 228 (1995).
[CrossRef]

Yang, S.

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 14, 819 (2002).
[CrossRef]

Yao, H.

C. F. R. Mateus, J.-S. P. Hung, C. J. Chang-Hasnain, B. Cunningham, P. Li, H. Yao, G. Hasnain, C. Kuo, and A. Liao, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 2–3.

Yuen, W.

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 8, 98 (1996).
[CrossRef]

Yuen, W. P.

M. Y. Li, W. P. Yuen, G. S. Li, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 10, 18 (1998).
[CrossRef]

E. C. Vail, G. S. Li, W. P. Yuen, and C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 3, 691 (1997).
[CrossRef]

Electron. Lett. (1)

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, Electron. Lett. 31, 228 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 6, 978 (2000).
[CrossRef]

E. C. Vail, G. S. Li, W. P. Yuen, and C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 3, 691 (1997).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

M. Y. Li, W. P. Yuen, G. S. Li, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 10, 18 (1998).
[CrossRef]

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 14, 819 (2002).
[CrossRef]

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 8, 98 (1996).
[CrossRef]

J. Microelectromech. Syst. (1)

M. S. Weinberg, J. Microelectromech. Syst. 8, 529 (1999).
[CrossRef]

J. Micromech. Microeng. (1)

J. Soderkvist and K. Hjort, J. Micromech. Microeng. 4, 28 (1994).
[CrossRef]

Other (2)

S. Ramo, J. Whinnery, and T. VanDuzer, Fields and Waves in Communication (Wiley, New York, 1984).

C. F. R. Mateus, J.-S. P. Hung, C. J. Chang-Hasnain, B. Cunningham, P. Li, H. Yao, G. Hasnain, C. Kuo, and A. Liao, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 2–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the tunable MEMS VCSEL device with a close-up view of piezoelectrically actuated top distributed Bragg reflector (DBR) layers.

Fig. 2
Fig. 2

Comparison of piezoelectric and electrostatic actuation of a 250 - μ m -long cantilever beam. An initial gap size of 1.2 μ m was assumed. Note that displacement owing to piezo actuation is bidirectional for the same nominal power supply voltage.

Fig. 3
Fig. 3

Tuning range versus air gap and the gain curve limits.

Fig. 4
Fig. 4

L–I curves for a 10 - μ m aperture device for several wavelengths in the tuning range. Inset, variation of threshold current as a function of lasing wavelength.

Tables (1)

Tables Icon

Table 1 Dependence of Tuning Range (in Nanometers) on the Composition of DBR Pairs and the Number of Fixed Pairs in the Top Mirror

Metrics