Abstract

We show the possibility of developing an all-optical passive transistor in a simple and novel way. This could be done by copropagating two coaxial beams through a modified optical power filter. We show NOT logic and intensity modulation of the strong beam by the weak beam obtained with the analog.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, IEEE Photonics Technol. Lett. 15, 1422 (2003).
    [CrossRef]
  2. G. I. Stegeman and C. T. Seaton, J. Appl. Phys. 58, R57 (1985).
    [CrossRef]
  3. S. D. Smith, Appl. Opt. 25, 1550 (1986).
    [CrossRef]
  4. B. E. Little and S. T. Chu, Opt. Photonics News 11, 24 (2000).
    [CrossRef]
  5. J. E. Heebner and R. W. Boyd, Opt. Lett. 24, 847 (1999).
    [CrossRef]
  6. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, Opt. Lett. 25, 554 (2000).
    [CrossRef]
  7. P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
    [CrossRef]
  8. S. Medhekar, M. S. Sodha, and S. Konar, Opt. Lett. 21, 305 (1996).
    [CrossRef] [PubMed]
  9. M. S. Sodha, D. P. Tiwari, J. Kamal, and V. K. Tripathi, Radio Sci. 8, 559 (1973).
    [CrossRef]
  10. S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Sov. Phys. Usp. 10, 609 (1968).
    [CrossRef]

2003 (1)

T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, IEEE Photonics Technol. Lett. 15, 1422 (2003).
[CrossRef]

2000 (3)

B. E. Little and S. T. Chu, Opt. Photonics News 11, 24 (2000).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, Opt. Lett. 25, 554 (2000).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
[CrossRef]

1999 (1)

1996 (1)

1986 (1)

1985 (1)

G. I. Stegeman and C. T. Seaton, J. Appl. Phys. 58, R57 (1985).
[CrossRef]

1973 (1)

M. S. Sodha, D. P. Tiwari, J. Kamal, and V. K. Tripathi, Radio Sci. 8, 559 (1973).
[CrossRef]

1968 (1)

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Sov. Phys. Usp. 10, 609 (1968).
[CrossRef]

Absil, P. P.

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, Opt. Lett. 25, 554 (2000).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Sov. Phys. Usp. 10, 609 (1968).
[CrossRef]

Boyd, R. W.

Calhoun, L. C.

T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, IEEE Photonics Technol. Lett. 15, 1422 (2003).
[CrossRef]

Cho, P. S.

Chu, S. T.

B. E. Little and S. T. Chu, Opt. Photonics News 11, 24 (2000).
[CrossRef]

Grover, R.

T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, IEEE Photonics Technol. Lett. 15, 1422 (2003).
[CrossRef]

Heebner, J. E.

Ho, P.-T.

T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, IEEE Photonics Technol. Lett. 15, 1422 (2003).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, Opt. Lett. 25, 554 (2000).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
[CrossRef]

Hryniewicz, J. V.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, Opt. Lett. 25, 554 (2000).
[CrossRef]

Ibrahim, T. A.

T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, IEEE Photonics Technol. Lett. 15, 1422 (2003).
[CrossRef]

Joneckis, L. G.

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, Opt. Lett. 25, 554 (2000).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
[CrossRef]

Kamal, J.

M. S. Sodha, D. P. Tiwari, J. Kamal, and V. K. Tripathi, Radio Sci. 8, 559 (1973).
[CrossRef]

Kanakaraju, S.

T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, IEEE Photonics Technol. Lett. 15, 1422 (2003).
[CrossRef]

Khokhlov, R. V.

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Sov. Phys. Usp. 10, 609 (1968).
[CrossRef]

Konar, S.

Kuo, L.-C.

T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, IEEE Photonics Technol. Lett. 15, 1422 (2003).
[CrossRef]

Little, B. E.

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, Opt. Lett. 25, 554 (2000).
[CrossRef]

B. E. Little and S. T. Chu, Opt. Photonics News 11, 24 (2000).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
[CrossRef]

Medhekar, S.

Seaton, C. T.

G. I. Stegeman and C. T. Seaton, J. Appl. Phys. 58, R57 (1985).
[CrossRef]

Smith, S. D.

Sodha, M. S.

S. Medhekar, M. S. Sodha, and S. Konar, Opt. Lett. 21, 305 (1996).
[CrossRef] [PubMed]

M. S. Sodha, D. P. Tiwari, J. Kamal, and V. K. Tripathi, Radio Sci. 8, 559 (1973).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman and C. T. Seaton, J. Appl. Phys. 58, R57 (1985).
[CrossRef]

Sukhorukov, A. P.

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Sov. Phys. Usp. 10, 609 (1968).
[CrossRef]

Tiwari, D. P.

M. S. Sodha, D. P. Tiwari, J. Kamal, and V. K. Tripathi, Radio Sci. 8, 559 (1973).
[CrossRef]

Tripathi, V. K.

M. S. Sodha, D. P. Tiwari, J. Kamal, and V. K. Tripathi, Radio Sci. 8, 559 (1973).
[CrossRef]

Wilson, R. A.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, Opt. Lett. 25, 554 (2000).
[CrossRef]

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (2)

T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, IEEE Photonics Technol. Lett. 15, 1422 (2003).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
[CrossRef]

J. Appl. Phys. (1)

G. I. Stegeman and C. T. Seaton, J. Appl. Phys. 58, R57 (1985).
[CrossRef]

Opt. Lett. (3)

Opt. Photonics News (1)

B. E. Little and S. T. Chu, Opt. Photonics News 11, 24 (2000).
[CrossRef]

Radio Sci. (1)

M. S. Sodha, D. P. Tiwari, J. Kamal, and V. K. Tripathi, Radio Sci. 8, 559 (1973).
[CrossRef]

Sov. Phys. Usp. (1)

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Sov. Phys. Usp. 10, 609 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the all-optical transistor.

Fig. 2
Fig. 2

Variation of output p3 with p2 for the appropriately chosen constant value of p 1 ( α E 01 2 ) = 00.0001263087551857 (HIGH) and fiber separation z = 0.001475 m .

Fig. 3
Fig. 3

Timing diagram of p2 (solid line) and p3 (dotted line) for a dc light supply with p 1 = HIGH .

Fig. 4
Fig. 4

Variation of output p3 with p2 for the appropriately chosen constant value of α E 01 2 = 00.000156308755186 (p1) and fiber separation z = 0.0021 m .

Fig. 5
Fig. 5

Inverted and amplified output at p3 obtained with an input signal at p2 within the range 0–0.000032 for the parameters of Fig. 4.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

A 1 2 ( z ) z = 0 = E 01 2 exp ( r 2 r 1 2 ) ,
A 2 2 ( z ) z = 0 = E 02 2 exp ( r 2 r 2 2 ) ,
ε ( ω 1 ) = ε 10 + φ 1 ( A 1 , A 2 ) ,
ε ( ω 2 ) = ε 20 + φ 2 ( A 1 , A 2 ) ,
φ 1 = ε s 1 X ( 1 + X ) , X = ( ε 11 A 1 2 + ε 12 A 2 2 ) 2 ,
φ 2 = ε s 2 Y ( 1 + Y ) , Y = ( ε 21 A 1 2 + ε 22 A 2 2 ) 2 ,
2 f 1 z 2 = 1 k 1 2 r 1 4 f 1 3 ε s 1 ε 11 E 01 2 2 ε 10 r 1 2 f 1 3 ( 1 + ε 11 E 01 2 2 f 1 2 + ε 12 E 02 2 2 f 2 2 ) 2 f 1 ε s 1 ε 12 E 02 2 2 ε 10 r 2 2 f 2 4 ( 1 + ε 11 E 01 2 2 f 1 2 + ε 12 E 02 2 2 f 2 2 ) 2 ,
2 f 2 z 2 = 1 k 2 2 r 2 4 f 2 3 ε s 2 ε 22 E 02 2 2 ε 20 r 2 2 f 2 3 ( 1 + ε 21 E 01 2 2 f 1 2 + ε 22 E 02 2 2 f 2 2 ) 2 f 2 ε s 2 ε 21 E 01 2 2 ε 20 r 1 2 f 1 4 ( 1 + ε 21 E 01 2 2 f 1 2 + ε 22 E 02 2 2 f 2 2 ) 2 ,
k 1 = k 2 = k , r 1 = r 2 = r 0 , ε s 1 = ε s 2 = ε s , ε 10 = ε 20 = ε ,
ε 11 = ε 12 = ε 21 = ε 22 = α .
2 f 1 z 2 = 1 k 2 r 0 4 f 1 3 ε s α E 01 2 2 ε r 0 2 f 1 3 ( 1 + α E 01 2 2 f 1 2 + α E 02 2 2 f 2 2 ) 2 f 1 ε s α E 02 2 2 ε r 0 2 f 2 4 ( 1 + α E 01 2 2 f 1 2 + α E 02 2 2 f 2 2 ) 2 ,
2 f 2 z 2 = 1 k 2 r 0 4 f 2 3 ε s α E 02 2 2 ε r 0 2 f 2 3 ( 1 + α E 01 2 2 f 1 2 + α E 02 2 2 f 2 2 ) 2 f 2 ε s α E 01 2 2 ε r 0 2 f 1 4 ( 1 + α E 01 2 2 f 1 2 + α E 02 2 2 f 2 2 ) 2 .
T 1 = 1 r 0 4 f 1 2 [ ( 1 2 r 0 2 f 1 2 + 1 2 r 0 2 ) 2 + ( k β 1 2 ) 2 ] ,
T 2 = 1 r 0 4 f 2 2 [ ( 1 2 r 0 2 f 2 2 + 1 2 r 0 2 ) 2 + ( k β 2 2 ) 2 ] ,

Metrics