Abstract

As a well-established laser fabrication approach, holographic lithography, or multibeam interference patterning, is known for its capability to create long-range ordered large-volume photonic crystals (PhCs) rapidly. Its broad use is, however, hampered by difficulty in inducing artificially designed defects for device functions. We use pinpoint femtosecond laser ablation to remove and two-photon photopolymerization to add desired defective features to obtain photonic acceptors and photonic donors, respectively, in an otherwise complete PhC matrix produced by holographic lithography. The combined use of the two direct laser writing technologies would immediately make holographic lithography a promising industrial tool for PhC manufacture.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Shoji and S. Kawata, Appl. Phys. Lett. 76, 2668 (2000).
    [CrossRef]
  2. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
    [CrossRef] [PubMed]
  3. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, Appl. Phys. Lett. 79, 725 (2001).
    [CrossRef]
  4. S. Maruo, O. Nakamura, and S. Kawata, Opt. Lett. 22, 132 (1997).
    [CrossRef] [PubMed]
  5. S. Kawata, H.-B. Sun, T. Tanaka, and T. Kenji, Nature 412, 697 (2001).
    [CrossRef] [PubMed]
  6. H.-B. Sun, S. Matsuo, and H. Misawa, Appl. Phys. Lett. 74, 786 (1999).
    [CrossRef]
  7. H.-B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, Opt. Lett. 26, 325 (2001).
    [CrossRef]
  8. S. Shoji, H.-B. Sun, and S. Kawata, Appl. Phys. Lett. 83, 608 (2003). Note that here the PhC period is much larger than that obtained with two-photon photopolymerization (Ref. [10], below). However, the exposure duration is not directly affected by variation of the lattice constant in holographic lithography.
    [CrossRef]
  9. E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
    [CrossRef]
  10. H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, Appl. Phys. Lett. 85, 3708 (2004).
    [CrossRef]
  11. The fabrication time depends on the fabrication condition and the complexity of the structure. A faster laser focal spot scanning speed was reported by S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, J. Photopolym. Sci. Technol. 14, 657 (2001).
    [CrossRef]
  12. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).
    [CrossRef] [PubMed]
  13. B. Blanchet, C. R. Fincher, C. L. Jackson, S. I. Shah, and K. H. Gardner, Science 262, 719 (1993).
    [CrossRef] [PubMed]
  14. P. G. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, Jpn. J. Appl. Phys. Part 1 38, L839 (1999).
    [CrossRef]
  15. K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
    [CrossRef]
  16. W. Lee, S. A. Pruzinsky, and P. V. Braun, Adv. Mater. 14, 271 (2002).
    [CrossRef]
  17. R. T. Morrison and R. N. Boyd, Organic Chemistry, 6th ed. (Prentice-Hall, Englewood Cliffs, N.J., 1992).

2004 (1)

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, Appl. Phys. Lett. 85, 3708 (2004).
[CrossRef]

2003 (1)

S. Shoji, H.-B. Sun, and S. Kawata, Appl. Phys. Lett. 83, 608 (2003). Note that here the PhC period is much larger than that obtained with two-photon photopolymerization (Ref. [10], below). However, the exposure duration is not directly affected by variation of the lattice constant in holographic lithography.
[CrossRef]

2002 (1)

W. Lee, S. A. Pruzinsky, and P. V. Braun, Adv. Mater. 14, 271 (2002).
[CrossRef]

2001 (4)

The fabrication time depends on the fabrication condition and the complexity of the structure. A faster laser focal spot scanning speed was reported by S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, J. Photopolym. Sci. Technol. 14, 657 (2001).
[CrossRef]

H.-B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, Opt. Lett. 26, 325 (2001).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and T. Kenji, Nature 412, 697 (2001).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, Appl. Phys. Lett. 79, 725 (2001).
[CrossRef]

2000 (2)

S. Shoji and S. Kawata, Appl. Phys. Lett. 76, 2668 (2000).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
[CrossRef] [PubMed]

1999 (2)

H.-B. Sun, S. Matsuo, and H. Misawa, Appl. Phys. Lett. 74, 786 (1999).
[CrossRef]

P. G. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, Jpn. J. Appl. Phys. Part 1 38, L839 (1999).
[CrossRef]

1997 (3)

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, Opt. Lett. 22, 132 (1997).
[CrossRef] [PubMed]

1993 (1)

B. Blanchet, C. R. Fincher, C. L. Jackson, S. I. Shah, and K. H. Gardner, Science 262, 719 (1993).
[CrossRef] [PubMed]

1991 (1)

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).
[CrossRef] [PubMed]

Barlow, S.

The fabrication time depends on the fabrication condition and the complexity of the structure. A faster laser focal spot scanning speed was reported by S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, J. Photopolym. Sci. Technol. 14, 657 (2001).
[CrossRef]

Blanchet, B.

B. Blanchet, C. R. Fincher, C. L. Jackson, S. I. Shah, and K. H. Gardner, Science 262, 719 (1993).
[CrossRef] [PubMed]

Boyd, R. N.

R. T. Morrison and R. N. Boyd, Organic Chemistry, 6th ed. (Prentice-Hall, Englewood Cliffs, N.J., 1992).

Braun, K.

The fabrication time depends on the fabrication condition and the complexity of the structure. A faster laser focal spot scanning speed was reported by S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, J. Photopolym. Sci. Technol. 14, 657 (2001).
[CrossRef]

Braun, P. V.

W. Lee, S. A. Pruzinsky, and P. V. Braun, Adv. Mater. 14, 271 (2002).
[CrossRef]

Brommer, K. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).
[CrossRef] [PubMed]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
[CrossRef] [PubMed]

Cumpston, B. H.

The fabrication time depends on the fabrication condition and the complexity of the structure. A faster laser focal spot scanning speed was reported by S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, J. Photopolym. Sci. Technol. 14, 657 (2001).
[CrossRef]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
[CrossRef] [PubMed]

Eliseev, P. G.

P. G. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, Jpn. J. Appl. Phys. Part 1 38, L839 (1999).
[CrossRef]

Erskine, L. L.

The fabrication time depends on the fabrication condition and the complexity of the structure. A faster laser focal spot scanning speed was reported by S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, J. Photopolym. Sci. Technol. 14, 657 (2001).
[CrossRef]

Fincher, C. R.

B. Blanchet, C. R. Fincher, C. L. Jackson, S. I. Shah, and K. H. Gardner, Science 262, 719 (1993).
[CrossRef] [PubMed]

Gardner, K. H.

B. Blanchet, C. R. Fincher, C. L. Jackson, S. I. Shah, and K. H. Gardner, Science 262, 719 (1993).
[CrossRef] [PubMed]

Glezer, E. N.

E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
[CrossRef]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).
[CrossRef] [PubMed]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
[CrossRef] [PubMed]

Heikal, A. A.

The fabrication time depends on the fabrication condition and the complexity of the structure. A faster laser focal spot scanning speed was reported by S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, J. Photopolym. Sci. Technol. 14, 657 (2001).
[CrossRef]

Hirao, K.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Inouye, H.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Jackson, C. L.

B. Blanchet, C. R. Fincher, C. L. Jackson, S. I. Shah, and K. H. Gardner, Science 262, 719 (1993).
[CrossRef] [PubMed]

Joannopoulos, J. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).
[CrossRef] [PubMed]

Juodkazis, S.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, Appl. Phys. Lett. 79, 725 (2001).
[CrossRef]

H.-B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, Opt. Lett. 26, 325 (2001).
[CrossRef]

P. G. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, Jpn. J. Appl. Phys. Part 1 38, L839 (1999).
[CrossRef]

Kawata, S.

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, Appl. Phys. Lett. 85, 3708 (2004).
[CrossRef]

S. Shoji, H.-B. Sun, and S. Kawata, Appl. Phys. Lett. 83, 608 (2003). Note that here the PhC period is much larger than that obtained with two-photon photopolymerization (Ref. [10], below). However, the exposure duration is not directly affected by variation of the lattice constant in holographic lithography.
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and T. Kenji, Nature 412, 697 (2001).
[CrossRef] [PubMed]

S. Shoji and S. Kawata, Appl. Phys. Lett. 76, 2668 (2000).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, Opt. Lett. 22, 132 (1997).
[CrossRef] [PubMed]

Kenji, T.

S. Kawata, H.-B. Sun, T. Tanaka, and T. Kenji, Nature 412, 697 (2001).
[CrossRef] [PubMed]

Kim, M. S.

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, Appl. Phys. Lett. 85, 3708 (2004).
[CrossRef]

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, Appl. Phys. Lett. 79, 725 (2001).
[CrossRef]

Kuebler, S. M.

The fabrication time depends on the fabrication condition and the complexity of the structure. A faster laser focal spot scanning speed was reported by S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, J. Photopolym. Sci. Technol. 14, 657 (2001).
[CrossRef]

Lee, K. S.

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, Appl. Phys. Lett. 85, 3708 (2004).
[CrossRef]

Lee, W.

W. Lee, S. A. Pruzinsky, and P. V. Braun, Adv. Mater. 14, 271 (2002).
[CrossRef]

Marder, S. R.

The fabrication time depends on the fabrication condition and the complexity of the structure. A faster laser focal spot scanning speed was reported by S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, J. Photopolym. Sci. Technol. 14, 657 (2001).
[CrossRef]

Maruo, S.

Matsuo, S.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, Appl. Phys. Lett. 79, 725 (2001).
[CrossRef]

H.-B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, Opt. Lett. 26, 325 (2001).
[CrossRef]

H.-B. Sun, S. Matsuo, and H. Misawa, Appl. Phys. Lett. 74, 786 (1999).
[CrossRef]

Mazur, E.

E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
[CrossRef]

Meade, R. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).
[CrossRef] [PubMed]

Misawa, H.

H.-B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, Opt. Lett. 26, 325 (2001).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, Appl. Phys. Lett. 79, 725 (2001).
[CrossRef]

H.-B. Sun, S. Matsuo, and H. Misawa, Appl. Phys. Lett. 74, 786 (1999).
[CrossRef]

P. G. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, Jpn. J. Appl. Phys. Part 1 38, L839 (1999).
[CrossRef]

Mitsuyu, T.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Miura, K.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Morrison, R. T.

R. T. Morrison and R. N. Boyd, Organic Chemistry, 6th ed. (Prentice-Hall, Englewood Cliffs, N.J., 1992).

Nakamura, O.

Nishii, J.

Perry, J. W.

The fabrication time depends on the fabrication condition and the complexity of the structure. A faster laser focal spot scanning speed was reported by S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, J. Photopolym. Sci. Technol. 14, 657 (2001).
[CrossRef]

Pruzinsky, S. A.

W. Lee, S. A. Pruzinsky, and P. V. Braun, Adv. Mater. 14, 271 (2002).
[CrossRef]

Qiu, J. R.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Rappe, A. M.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).
[CrossRef] [PubMed]

Rumi, M.

The fabrication time depends on the fabrication condition and the complexity of the structure. A faster laser focal spot scanning speed was reported by S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, J. Photopolym. Sci. Technol. 14, 657 (2001).
[CrossRef]

Sakai, S.

P. G. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, Jpn. J. Appl. Phys. Part 1 38, L839 (1999).
[CrossRef]

Shah, S. I.

B. Blanchet, C. R. Fincher, C. L. Jackson, S. I. Shah, and K. H. Gardner, Science 262, 719 (1993).
[CrossRef] [PubMed]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
[CrossRef] [PubMed]

Shoji, S.

S. Shoji, H.-B. Sun, and S. Kawata, Appl. Phys. Lett. 83, 608 (2003). Note that here the PhC period is much larger than that obtained with two-photon photopolymerization (Ref. [10], below). However, the exposure duration is not directly affected by variation of the lattice constant in holographic lithography.
[CrossRef]

S. Shoji and S. Kawata, Appl. Phys. Lett. 76, 2668 (2000).
[CrossRef]

Sugahara, T.

P. G. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, Jpn. J. Appl. Phys. Part 1 38, L839 (1999).
[CrossRef]

Sun, H.-B.

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, Appl. Phys. Lett. 85, 3708 (2004).
[CrossRef]

S. Shoji, H.-B. Sun, and S. Kawata, Appl. Phys. Lett. 83, 608 (2003). Note that here the PhC period is much larger than that obtained with two-photon photopolymerization (Ref. [10], below). However, the exposure duration is not directly affected by variation of the lattice constant in holographic lithography.
[CrossRef]

H.-B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, Opt. Lett. 26, 325 (2001).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and T. Kenji, Nature 412, 697 (2001).
[CrossRef] [PubMed]

H.-B. Sun, S. Matsuo, and H. Misawa, Appl. Phys. Lett. 74, 786 (1999).
[CrossRef]

P. G. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, Jpn. J. Appl. Phys. Part 1 38, L839 (1999).
[CrossRef]

Sun, K.

Suwa, T.

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, Appl. Phys. Lett. 85, 3708 (2004).
[CrossRef]

Takada, K.

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, Appl. Phys. Lett. 85, 3708 (2004).
[CrossRef]

Tanaka, T.

S. Kawata, H.-B. Sun, T. Tanaka, and T. Kenji, Nature 412, 697 (2001).
[CrossRef] [PubMed]

Thayumanavan, S.

The fabrication time depends on the fabrication condition and the complexity of the structure. A faster laser focal spot scanning speed was reported by S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, J. Photopolym. Sci. Technol. 14, 657 (2001).
[CrossRef]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
[CrossRef] [PubMed]

Watanabe, M.

Watanabe, T.

The fabrication time depends on the fabrication condition and the complexity of the structure. A faster laser focal spot scanning speed was reported by S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, J. Photopolym. Sci. Technol. 14, 657 (2001).
[CrossRef]

Xu, Y.

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).
[CrossRef] [PubMed]

Zaccaria, R. P.

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, Appl. Phys. Lett. 85, 3708 (2004).
[CrossRef]

Adv. Mater. (1)

W. Lee, S. A. Pruzinsky, and P. V. Braun, Adv. Mater. 14, 271 (2002).
[CrossRef]

Appl. Phys. Lett. (7)

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

H.-B. Sun, S. Matsuo, and H. Misawa, Appl. Phys. Lett. 74, 786 (1999).
[CrossRef]

S. Shoji and S. Kawata, Appl. Phys. Lett. 76, 2668 (2000).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, Appl. Phys. Lett. 79, 725 (2001).
[CrossRef]

S. Shoji, H.-B. Sun, and S. Kawata, Appl. Phys. Lett. 83, 608 (2003). Note that here the PhC period is much larger than that obtained with two-photon photopolymerization (Ref. [10], below). However, the exposure duration is not directly affected by variation of the lattice constant in holographic lithography.
[CrossRef]

E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
[CrossRef]

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, Appl. Phys. Lett. 85, 3708 (2004).
[CrossRef]

J. Photopolym. Sci. Technol. (1)

The fabrication time depends on the fabrication condition and the complexity of the structure. A faster laser focal spot scanning speed was reported by S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, J. Photopolym. Sci. Technol. 14, 657 (2001).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

P. G. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, Jpn. J. Appl. Phys. Part 1 38, L839 (1999).
[CrossRef]

Nature (2)

S. Kawata, H.-B. Sun, T. Tanaka, and T. Kenji, Nature 412, 697 (2001).
[CrossRef] [PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).
[CrossRef] [PubMed]

Science (1)

B. Blanchet, C. R. Fincher, C. L. Jackson, S. I. Shah, and K. H. Gardner, Science 262, 719 (1993).
[CrossRef] [PubMed]

Other (1)

R. T. Morrison and R. N. Boyd, Organic Chemistry, 6th ed. (Prentice-Hall, Englewood Cliffs, N.J., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Creation of acceptor-type defects by femtosecond (Fs) laser-induced surface ablation. (a) Illustration of the concept. (b) Exposure-time-dependent diameters of holes ablated under various irradiation intensities: 1, 0.32; 2, 0.38; 3, 0.44; 4, 0.52 GW cm 2 . The inset is the scanning electron microscopic image of the hole ablated at 0.32 - GW cm 2 exposure for 1 32 s .

Fig. 2
Fig. 2

Scanning electron microscope images of a defect engraved by pinpoint laser ablation. Exposures were conducted at (a) single point, 0.52 GW cm 2 for 1 128 s ; (b) single point, 0.44 GW cm 2 for 1 32 s , and (c) multiple points by lateral scanning, each less than 0.32 GW cm 2 exposure for 1 32 s . (d) Bent waveguide, an enlarged section of which is shown in (e).

Fig. 3
Fig. 3

Induction of donor-type defects by additive two-photon photopolymerization. (a) Illustration of the concept. (b) Waveguides written with SCR-500 resin in a PhC matrix made from SU-8 resin. The inset is a magnification. (c) Waveguide with a larger wall thickness.

Fig. 4
Fig. 4

Donor defects produced by two-photon photopolymerization of the same resin as that for the PhC matrix. Since the refractive index varies significantly after photopolymerization, from 1.52 to roughly 1.53 in the visible region for the currently used resin, two-photon photopolymerization could be performed immediately after multibeam interference patterning without the need for developing. (a) Broad area connection, (b) point defect, and (c) line defect or a prototype of the waveguide.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) = c p , q = 1 n ϵ p ϵ q * exp [ i ( k p k q ) r ] ,

Metrics