Abstract

We have found that the optical power of a laser diode (LD) does not change with the injected light intensity that is modulated when its injection current is at some specific values. The amplitude of optical power change of the LD varies periodically with the increase of the injection current. It is made clear through theoretical analysis that these phenomena are caused by gain compression and interband carrier absorption of the LD that depend on longitudinal mode competition, bandgap-shrinkage effects, thermal conduction, and so on. Our experimental results make it easy to eliminate optical power change of LDs. We only need to choose a proper value of the injection current.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
    [CrossRef]
  2. R. Onodera, Y. Ishii, N. Ohde, Y. Takahashi, and T. Yoshino, J. Lightwave Technol. 13, 675 (1995).
    [CrossRef]
  3. X. F. Wang, X. Z. Wang, F. Qian, G. Chen, G. T. Chen, and Z. J. Fang, Opt. Laser Technol. 31, 559 (1999).
    [CrossRef]
  4. J. M. Wiesenfeld, J. S. Perino, A. H. Gnauck, and B. Glance, Electron. Lett. 30, 720 (1994).
    [CrossRef]
  5. H. B. Lu, X. Z. Wang, X. F. Wang, F. Qian, S. Song, G. T. Chen, and Z. J. Fang, Chin. J. Lasers 27, 969 (2000).

2000 (1)

H. B. Lu, X. Z. Wang, X. F. Wang, F. Qian, S. Song, G. T. Chen, and Z. J. Fang, Chin. J. Lasers 27, 969 (2000).

1999 (1)

X. F. Wang, X. Z. Wang, F. Qian, G. Chen, G. T. Chen, and Z. J. Fang, Opt. Laser Technol. 31, 559 (1999).
[CrossRef]

1995 (1)

R. Onodera, Y. Ishii, N. Ohde, Y. Takahashi, and T. Yoshino, J. Lightwave Technol. 13, 675 (1995).
[CrossRef]

1994 (1)

J. M. Wiesenfeld, J. S. Perino, A. H. Gnauck, and B. Glance, Electron. Lett. 30, 720 (1994).
[CrossRef]

1982 (1)

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

Chen, G.

X. F. Wang, X. Z. Wang, F. Qian, G. Chen, G. T. Chen, and Z. J. Fang, Opt. Laser Technol. 31, 559 (1999).
[CrossRef]

Chen, G. T.

H. B. Lu, X. Z. Wang, X. F. Wang, F. Qian, S. Song, G. T. Chen, and Z. J. Fang, Chin. J. Lasers 27, 969 (2000).

X. F. Wang, X. Z. Wang, F. Qian, G. Chen, G. T. Chen, and Z. J. Fang, Opt. Laser Technol. 31, 559 (1999).
[CrossRef]

Fang, Z. J.

H. B. Lu, X. Z. Wang, X. F. Wang, F. Qian, S. Song, G. T. Chen, and Z. J. Fang, Chin. J. Lasers 27, 969 (2000).

X. F. Wang, X. Z. Wang, F. Qian, G. Chen, G. T. Chen, and Z. J. Fang, Opt. Laser Technol. 31, 559 (1999).
[CrossRef]

Glance, B.

J. M. Wiesenfeld, J. S. Perino, A. H. Gnauck, and B. Glance, Electron. Lett. 30, 720 (1994).
[CrossRef]

Gnauck, A. H.

J. M. Wiesenfeld, J. S. Perino, A. H. Gnauck, and B. Glance, Electron. Lett. 30, 720 (1994).
[CrossRef]

Ishii, Y.

R. Onodera, Y. Ishii, N. Ohde, Y. Takahashi, and T. Yoshino, J. Lightwave Technol. 13, 675 (1995).
[CrossRef]

Ito, M.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

Kimura, T.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

Kobayashi, S.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

Lu, H. B.

H. B. Lu, X. Z. Wang, X. F. Wang, F. Qian, S. Song, G. T. Chen, and Z. J. Fang, Chin. J. Lasers 27, 969 (2000).

Ohde, N.

R. Onodera, Y. Ishii, N. Ohde, Y. Takahashi, and T. Yoshino, J. Lightwave Technol. 13, 675 (1995).
[CrossRef]

Onodera, R.

R. Onodera, Y. Ishii, N. Ohde, Y. Takahashi, and T. Yoshino, J. Lightwave Technol. 13, 675 (1995).
[CrossRef]

Perino, J. S.

J. M. Wiesenfeld, J. S. Perino, A. H. Gnauck, and B. Glance, Electron. Lett. 30, 720 (1994).
[CrossRef]

Qian, F.

H. B. Lu, X. Z. Wang, X. F. Wang, F. Qian, S. Song, G. T. Chen, and Z. J. Fang, Chin. J. Lasers 27, 969 (2000).

X. F. Wang, X. Z. Wang, F. Qian, G. Chen, G. T. Chen, and Z. J. Fang, Opt. Laser Technol. 31, 559 (1999).
[CrossRef]

Song, S.

H. B. Lu, X. Z. Wang, X. F. Wang, F. Qian, S. Song, G. T. Chen, and Z. J. Fang, Chin. J. Lasers 27, 969 (2000).

Takahashi, Y.

R. Onodera, Y. Ishii, N. Ohde, Y. Takahashi, and T. Yoshino, J. Lightwave Technol. 13, 675 (1995).
[CrossRef]

Wang, X. F.

H. B. Lu, X. Z. Wang, X. F. Wang, F. Qian, S. Song, G. T. Chen, and Z. J. Fang, Chin. J. Lasers 27, 969 (2000).

X. F. Wang, X. Z. Wang, F. Qian, G. Chen, G. T. Chen, and Z. J. Fang, Opt. Laser Technol. 31, 559 (1999).
[CrossRef]

Wang, X. Z.

H. B. Lu, X. Z. Wang, X. F. Wang, F. Qian, S. Song, G. T. Chen, and Z. J. Fang, Chin. J. Lasers 27, 969 (2000).

X. F. Wang, X. Z. Wang, F. Qian, G. Chen, G. T. Chen, and Z. J. Fang, Opt. Laser Technol. 31, 559 (1999).
[CrossRef]

Wiesenfeld, J. M.

J. M. Wiesenfeld, J. S. Perino, A. H. Gnauck, and B. Glance, Electron. Lett. 30, 720 (1994).
[CrossRef]

Yamamoto, Y.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

Yoshino, T.

R. Onodera, Y. Ishii, N. Ohde, Y. Takahashi, and T. Yoshino, J. Lightwave Technol. 13, 675 (1995).
[CrossRef]

Chin. J. Lasers (1)

H. B. Lu, X. Z. Wang, X. F. Wang, F. Qian, S. Song, G. T. Chen, and Z. J. Fang, Chin. J. Lasers 27, 969 (2000).

Electron. Lett. (1)

J. M. Wiesenfeld, J. S. Perino, A. H. Gnauck, and B. Glance, Electron. Lett. 30, 720 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

J. Lightwave Technol. (1)

R. Onodera, Y. Ishii, N. Ohde, Y. Takahashi, and T. Yoshino, J. Lightwave Technol. 13, 675 (1995).
[CrossRef]

Opt. Laser Technol. (1)

X. F. Wang, X. Z. Wang, F. Qian, G. Chen, G. T. Chen, and Z. J. Fang, Opt. Laser Technol. 31, 559 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. Abbreviations defined in text.

Fig. 2
Fig. 2

(a) Injection current of LD 2 . The output of LD 1 is shown when its injection current is (b) 50.6, (c) 59.4, (d) 61.4, (e) 67.8, (f) 69.9, (g) 71.2, (h) 79.4, (i) 81.3 mA .

Fig. 3
Fig. 3

Relationship between the amplitude of output change of LD 1 and the injection current.

Fig. 4
Fig. 4

Carrier depletion corresponding to different wavelengths of injected light.

Metrics