Abstract

We propose a new stratified waveguide grating coupler (SWGC) to couple light from a fiber at normal incidence into a planar waveguide. SWGCs are designed to operate in the strong coupling regime without intermediate optics between the fiber and the waveguide. Two-dimensional finite-difference time-domain simulation in conjunction with microgenetic algorithm optimization shows that 72% coupling efficiency is possible for fiber (core size of 8.3μm and Δ=0.36%) to slab waveguide (1.2-μm core and Δ=3.1%) coupling. We show that the phase-matching and Bragg conditions are simultaneously satisfied through the fundamental leaky mode.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Jiang, J. Cai, G. P. Nordin, and L. Li, Opt. Lett. 28, 2381 (2003).
    [CrossRef] [PubMed]
  2. B. Wang, J. Jiang, and G. P. Nordin, Opt. Express 12, 3313 (2004), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  3. M. Li and S. J. Sheard, Opt. Eng. 11, 3101 (1996).
    [CrossRef]
  4. J. M. Miller, N. de Beaucoudrey, P. Chavel, J. Turunen, and E. Cambril, Appl. Opt. 36, 5717 (1997).
    [CrossRef] [PubMed]
  5. D. M. Chambers and G. P. Nordin, J. Opt. Soc. Am. A 5, 1184 (1999).
    [CrossRef]
  6. D. M. Chambers, G. P. Nordin, and S. Kim, Opt. Express 1, 27 (2003), http://www.opticsexpress.org.
    [CrossRef]
  7. A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).
  8. J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
    [CrossRef]
  9. T. Tamir and S. T. Peng, Appl. Phys. 14, 235 (1977).
    [CrossRef]
  10. W. Streifer, D. R. Scifers, and R. D. Burnham, IEEE J. Quantum Electron. 7, 422 (1976).
    [CrossRef]

2004

2003

J. Jiang, J. Cai, G. P. Nordin, and L. Li, Opt. Lett. 28, 2381 (2003).
[CrossRef] [PubMed]

D. M. Chambers, G. P. Nordin, and S. Kim, Opt. Express 1, 27 (2003), http://www.opticsexpress.org.
[CrossRef]

1999

D. M. Chambers and G. P. Nordin, J. Opt. Soc. Am. A 5, 1184 (1999).
[CrossRef]

1997

1996

M. Li and S. J. Sheard, Opt. Eng. 11, 3101 (1996).
[CrossRef]

1994

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

1977

T. Tamir and S. T. Peng, Appl. Phys. 14, 235 (1977).
[CrossRef]

1976

W. Streifer, D. R. Scifers, and R. D. Burnham, IEEE J. Quantum Electron. 7, 422 (1976).
[CrossRef]

Beaucoudrey, N. de

Berenger, J. P.

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

Burnham, R. D.

W. Streifer, D. R. Scifers, and R. D. Burnham, IEEE J. Quantum Electron. 7, 422 (1976).
[CrossRef]

Cai, J.

Cambril, E.

Chambers, D. M.

D. M. Chambers, G. P. Nordin, and S. Kim, Opt. Express 1, 27 (2003), http://www.opticsexpress.org.
[CrossRef]

D. M. Chambers and G. P. Nordin, J. Opt. Soc. Am. A 5, 1184 (1999).
[CrossRef]

Chavel, P.

Jiang, J.

Kim, S.

D. M. Chambers, G. P. Nordin, and S. Kim, Opt. Express 1, 27 (2003), http://www.opticsexpress.org.
[CrossRef]

Li, L.

Li, M.

M. Li and S. J. Sheard, Opt. Eng. 11, 3101 (1996).
[CrossRef]

Miller, J. M.

Nordin, G. P.

B. Wang, J. Jiang, and G. P. Nordin, Opt. Express 12, 3313 (2004), http://www.opticsexpress.org.
[CrossRef] [PubMed]

J. Jiang, J. Cai, G. P. Nordin, and L. Li, Opt. Lett. 28, 2381 (2003).
[CrossRef] [PubMed]

D. M. Chambers, G. P. Nordin, and S. Kim, Opt. Express 1, 27 (2003), http://www.opticsexpress.org.
[CrossRef]

D. M. Chambers and G. P. Nordin, J. Opt. Soc. Am. A 5, 1184 (1999).
[CrossRef]

Peng, S. T.

T. Tamir and S. T. Peng, Appl. Phys. 14, 235 (1977).
[CrossRef]

Scifers, D. R.

W. Streifer, D. R. Scifers, and R. D. Burnham, IEEE J. Quantum Electron. 7, 422 (1976).
[CrossRef]

Sheard, S. J.

M. Li and S. J. Sheard, Opt. Eng. 11, 3101 (1996).
[CrossRef]

Streifer, W.

W. Streifer, D. R. Scifers, and R. D. Burnham, IEEE J. Quantum Electron. 7, 422 (1976).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

Tamir, T.

T. Tamir and S. T. Peng, Appl. Phys. 14, 235 (1977).
[CrossRef]

Turunen, J.

Wang, B.

Appl. Opt.

Appl. Phys.

T. Tamir and S. T. Peng, Appl. Phys. 14, 235 (1977).
[CrossRef]

IEEE J. Quantum Electron.

W. Streifer, D. R. Scifers, and R. D. Burnham, IEEE J. Quantum Electron. 7, 422 (1976).
[CrossRef]

J. Comput. Phys.

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

J. Opt. Soc. Am. A

D. M. Chambers and G. P. Nordin, J. Opt. Soc. Am. A 5, 1184 (1999).
[CrossRef]

Opt. Eng.

M. Li and S. J. Sheard, Opt. Eng. 11, 3101 (1996).
[CrossRef]

Opt. Express

B. Wang, J. Jiang, and G. P. Nordin, Opt. Express 12, 3313 (2004), http://www.opticsexpress.org.
[CrossRef] [PubMed]

D. M. Chambers, G. P. Nordin, and S. Kim, Opt. Express 1, 27 (2003), http://www.opticsexpress.org.
[CrossRef]

Opt. Lett.

Other

A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SWGC geometry. Parameters defined in Table 1.

Fig. 2
Fig. 2

Magnitude-squared time-averaged electric field.

Fig. 3
Fig. 3

k-vector diagram of SWGC.

Tables (1)

Tables Icon

Table 1 Structural Parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n av = ( { i = 3 [ n 1 2 f i + n 2 2 ( 1 f i ) ] t i + m = 2 n 2 2 d m } ( i = 3 t i + m = 2 d m ) ) 1 2 ,

Metrics