Abstract

We experimentally and numerically investigate femtosecond-pulse propagation in a microstructured optical fiber consisting of a silica core surrounded by airholes that are filled with a high-index fluid. This fiber combines the resonant properties of hollow-core bandgap fibers and the high nonlinearity of index-guiding waveguides. A range of nonlinear optical effects can be observed, including soliton propagation, dispersive wave generation, and a Raman self-frequency shift. Tuning the center wavelength of the laser and varying the refractive index of the fluid lead to different propagation effects, mediated by the strongly wavelength-dependent group-velocity dispersion in these photonic bandgap confining structures.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, Nature 424, 847 (2003).
    [CrossRef] [PubMed]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  3. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003)
    [CrossRef] [PubMed]
  4. J. Jasapara, T. H. Her, R. Bise, R. Windeler, and D. J. DiGiovanni, J. Opt. Soc. Am. B 20, 1611 (2003).
    [CrossRef]
  5. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
    [CrossRef]
  6. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, Opt. Express 11, 1243 (2003), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  7. C. J. Hamilton, B. Voegele, J. S. Aitchison, G. T. Kennedy, W. Sibbett, W. Biehlig, U. Peschel, T. Peschel, and F. Lederer, Opt. Lett. 21, 1226 (1996).
    [CrossRef] [PubMed]
  8. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 466.
  9. B. T. Kuhlmey, T. P. White, D. Maystre, G. Renversez, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, J. Opt. Soc. Am. B 19, 2331 (2002).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1996).
  11. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, Opt. Express 12, 299 (2004), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  12. F. M. Mitschke and L. F. Mollenauer, Opt. Lett. 11, 659 (1986).
    [CrossRef] [PubMed]
  13. P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, Opt. Lett. 12, 628 (1987).
    [CrossRef] [PubMed]
  14. A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef]

2004 (1)

2003 (4)

2002 (1)

2001 (1)

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

2000 (1)

1996 (1)

1987 (1)

1986 (2)

F. M. Mitschke and L. F. Mollenauer, Opt. Lett. 11, 659 (1986).
[CrossRef] [PubMed]

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1996).

Aitchison, J. S.

Biancalana, F.

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, Opt. Express 12, 299 (2004), http://www.opticsexpress.org.
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003)
[CrossRef] [PubMed]

Biehlig, W.

Birks, T. A.

Bise, R.

Bise, R. T.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 466.

Botten, L. C.

Chen, H. H.

de Sterke, C. M.

DiGiovanni, D. J.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Dunn, S. C.

Efimov, A.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003)
[CrossRef] [PubMed]

Eggleton, B. J.

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, Opt. Express 11, 1243 (2003), http://www.opticsexpress.org.
[CrossRef] [PubMed]

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 466.

Hamilton, C. J.

Her, T. H.

Herrmann, J.

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Husakou, A. V.

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Jasapara, J.

Joly, N.

Kennedy, G. T.

Kerbage, C.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 466.

Knight, J. C.

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, Opt. Express 12, 299 (2004), http://www.opticsexpress.org.
[CrossRef] [PubMed]

J. C. Knight, Nature 424, 847 (2003).
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003)
[CrossRef] [PubMed]

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Kranz, K. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 466.

Kuhlmey, B. T.

Lederer, F.

Lee, Y. C.

Litchinitser, N. M.

Maystre, D.

McPhedran, R. C.

Menyuk, C. R.

Mitschke, F. M.

Mollenauer, L. F.

Omenetto, F. G.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003)
[CrossRef] [PubMed]

Peschel, T.

Peschel, U.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Ranka, J. K.

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003)
[CrossRef] [PubMed]

Renversez, G.

Russell, P. St. J.

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, Opt. Express 12, 299 (2004), http://www.opticsexpress.org.
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003)
[CrossRef] [PubMed]

Sibbett, W.

Skryabin, D. V.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003)
[CrossRef] [PubMed]

Stentz, A. J.

Taylor, A. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003)
[CrossRef] [PubMed]

Trevor, D. J.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 466.

Usner, B.

Voegele, B.

Wadsworth, W. J.

Wai, P. K. A.

White, T. P.

Windeler, R.

Windeler, R. S.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
[CrossRef]

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 466.

Appl. Phys. Lett. (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (2)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003)
[CrossRef] [PubMed]

J. C. Knight, Nature 424, 847 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1996).

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 466.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the ARROW structure. (b) Linear transmission through this fiber normalized against the transmission through the fiber with no fluid, measured for the third- and fourth-order bands. Dotted curves, propagation loss through the fiber as predicted by the multipole simulations. Dashed curve, transmission for the third-order band measured with an alternative high-index fluid ( n 589.3 nm = 1.64 ) .

Fig. 2
Fig. 2

(a) Calculated GVD in the third-order band of the ARROW PCF and experimental laser spectrum centered at λ 0 = 790 nm . (b) Effective mode area of the filled (solid curves) and the empty (dashed line) fiber and modal overlap ( η ) with the fluid regions.

Fig. 3
Fig. 3

Spectra measured after propagation inside the ARROW for several center wavelengths of the Ti : sapphire laser and different peak powers. The corresponding values of P ̂ are 4.1 ( L NL = 13 mm ) , 2.7 ( L NL = 20 mm ) , and 1.3 ( L NL = 40 mm ) kW . The line L NL = depicts linear propagation, i.e., the laser spectrum itself. Dashed curves, spectra calculated from numerical NLSE simulations. The arrows for λ 0 = 765 nm show the position of the dispersive wave as expected from Eq. (3).

Fig. 4
Fig. 4

Measured autocorrelation functions for (a) λ 0 = 810 nm and (b) λ 0 = 780 nm . Dashed curves, autocorrelation functions of the input pulses. The inset in (b) shows the autocorrelation function for L NL = 13 mm , where characteristic side peaks appear.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η = s ( x , y ) E ( x , y ) 2 d x d y E ( x , y ) 2 d x d y ,
L NL = 1 γ P ̂ , γ = n 2 2 π λ 0 A eff ; L D = τ P 2 3.1 β 2 ,
β NSR β S ( ω NSR ω S ) v S γ P ̂ = 0 ,

Metrics