Abstract

Because of the power imbalance between the two arms of an interferometer in an electro-optic modulator (EOM), the output of the EOM is combined amplitude modulation (AM) and phase modulation (PM) for the probe signal consisting of the pulse and the dc component. Because of this PM, the Brillouin gain–loss spectrum becomes asymmetric. The central Brillouin frequency is shifted from that of an AM pulse. The maximum extinction ratio of the EOM is limited to 29dB for a power-splitting ratio of 51% to 49%. The asymmetric property induced by PM is not pulse shape dependent; for both Gaussian- and super-Gaussian-shaped pulses the Brillouin loss spectrum is symmetric for AM and asymmetric for combined AM and PM (power imbalance).

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, in Optical Fiber Sensors, Vol. 16 of 1997OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.
  2. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
    [CrossRef]
  3. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, J. Lightwave Technol. 13, 1340 (1995).
    [CrossRef]
  4. X. Bao, A. Brown, M. DeMerchant, and J. Smith, Opt. Lett. 24, 510 (1999).
    [CrossRef]
  5. V. Lecoueche, D. J. Web, C. N. Pannell, and D. A. Jackson, Opt. Lett. 25, 156 (2000).
    [CrossRef]
  6. S. V. Afshar, G. A. Ferrier, X. Bao, and L. Chen, Opt. Lett. 28, 1418 (2003).
    [CrossRef] [PubMed]
  7. L. Zou, X. Bao, and L. Chen, Opt. Lett. 28, 2022 (2003).
    [CrossRef] [PubMed]
  8. R. Chu, M. Kanefsky, and J. Falk, J. Appl. Phys. 71, 4653 (1992).
    [CrossRef]

2003

2000

1999

1995

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, J. Lightwave Technol. 13, 1340 (1995).
[CrossRef]

1992

R. Chu, M. Kanefsky, and J. Falk, J. Appl. Phys. 71, 4653 (1992).
[CrossRef]

Afshar, S. V.

Bao, X.

Brown, A.

Chen, L.

Chu, R.

R. Chu, M. Kanefsky, and J. Falk, J. Appl. Phys. 71, 4653 (1992).
[CrossRef]

DeMerchant, M.

Dhliwayo, J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, J. Lightwave Technol. 13, 1340 (1995).
[CrossRef]

Facchini, M.

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, in Optical Fiber Sensors, Vol. 16 of 1997OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Falk, J.

R. Chu, M. Kanefsky, and J. Falk, J. Appl. Phys. 71, 4653 (1992).
[CrossRef]

Fellay, A.

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, in Optical Fiber Sensors, Vol. 16 of 1997OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Ferrier, G. A.

Heron, N.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, J. Lightwave Technol. 13, 1340 (1995).
[CrossRef]

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Jackson, D. A.

V. Lecoueche, D. J. Web, C. N. Pannell, and D. A. Jackson, Opt. Lett. 25, 156 (2000).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, J. Lightwave Technol. 13, 1340 (1995).
[CrossRef]

Kanefsky, M.

R. Chu, M. Kanefsky, and J. Falk, J. Appl. Phys. 71, 4653 (1992).
[CrossRef]

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Lecoueche, V.

Nikles, M.

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, in Optical Fiber Sensors, Vol. 16 of 1997OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Pannell, C. N.

Robert, P.

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, in Optical Fiber Sensors, Vol. 16 of 1997OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Smith, J.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Thevenaz, L.

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, in Optical Fiber Sensors, Vol. 16 of 1997OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Web, D. J.

Webb, D. J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, J. Lightwave Technol. 13, 1340 (1995).
[CrossRef]

Zou, L.

J. Appl. Phys.

R. Chu, M. Kanefsky, and J. Falk, J. Appl. Phys. 71, 4653 (1992).
[CrossRef]

J. Lightwave Technol.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, J. Lightwave Technol. 13, 1340 (1995).
[CrossRef]

Opt. Lett.

Other

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, in Optical Fiber Sensors, Vol. 16 of 1997OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Isoextinction ratio curves for the relation between A 2 A 1 and Δ ϕ .

Fig. 2
Fig. 2

Brillouin loss spectra at (a) R x = 20 dB and (b) 15 dB for both AM and combined AM and PM.

Fig. 3
Fig. 3

Brillouin loss spectra when (a) A 2 A 1 = 0.95 and 1.0 and (b) A 2 A 1 = 0.87 .

Fig. 4
Fig. 4

Brillouin spectrum for super-Gaussian and Gaussian pulse shapes at (a) Δ ϕ = 0 rad for an AM pulse and (b) Δ ϕ = 0.152 rad for a combined AM and PM pulse.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( z 1 ν g t 1 2 α ) E p = Q ¯ E s ,
( z + 1 ν g t + 1 2 α ) E s = Q ¯ * E p ,
( t + Γ ) Q ¯ = 1 2 Γ 1 g B E p E s * ,
E out = 2 2 ( A 1 exp { i [ ω t + ϕ ( t ) 2 ] } + A 2 exp { i [ ω t ϕ ( t ) 2 ] } ) = A out { 2 sin θ cos ϕ ( t ) 2 + 2 cos ( θ + π 4 ) exp [ i ϕ ( t ) 2 ] } .
R s = 10 log ( I out ) max ( I out ) min = 10 log 1 + sin 2 θ sin Δ ϕ 1 sin 2 θ cos Δ ϕ .
Q ¯ ( 0 , t ) = 1 2 Γ 1 g s exp ( Γ t ) A out { 2 sin θ 0 t E p ( 0 , t ) cos ϕ ( t ) 2 exp ( Γ t ) d t + 2 cos ( θ + π 4 ) 0 t E p ( 0 , t ) exp [ Γ t i ϕ ( t ) 2 ] d t } .

Metrics