Abstract

A numerical investigation of group birefringence is carried out on a recently reported highly birefringent hollow-core photonic bandgap fiber by use of an efficient vector finite-element method. The hollow fiber core has an area as large as that of approximately four airholes in the cladding region and assumes a rhombic shape with round corners, and the airholes in the cladding region are hexagonal and provide a high air-filling fraction. Numerical results show very high group birefringence of the order of 102 and phase birefringence of the order of 103.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of realistic cladding structures for air-core photonic bandgap fibers

Niels Asger Mortensen and Martin Dybendal Nielsen
Opt. Lett. 29(4) 349-351 (2004)

Leakage loss and group velocity dispersion in air-core photonic bandgap fibers

Kunimasa Saitoh and Masanori Koshiba
Opt. Express 11(23) 3100-3109 (2003)

High birefringent rhombic-hole photonic crystal fibers

Bin Hu, Min Lu, Weinan Li, Kuaisheng Zou, Zhiguang Zhou, Aoxiang Lin, and Ning Li
Appl. Opt. 49(31) 6098-6101 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription