Abstract

We show that the combination of cross-phase modulation and polarization-mode dispersion inside optical fibers leads to a novel phenomenon of intrapulse depolarization manifested as different random states of polarization across the pulse profile. Such polarization evolution of optical pulses is directly analogous to the phenomenon of spin decoherence in semiconductors or pseudospin relaxation in atoms.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. Slichter, Principles of Magnetic Resonance, 3rd ed. (Springer, New York, 1990).
    [CrossRef]
  2. F. Meier and B. Zakharchenya, eds., Optical Orientation (North-Holland, New York, 1984).
  3. D. Awschalom, D. Loss, and N. Samarth, eds., Semiconductor Spintronics and Quantum Computation (Springer, New York, 2002).
    [CrossRef]
  4. Y. Semenov and K. Kim, Phys. Rev. Lett. 92, 026601 (2004), and references therein.
    [CrossRef]
  5. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).
  6. J. H. Eberly, K. Wódkiewicz, and B. W. Shore, Phys. Rev. A 30, 2381 (1984), and references therein.
    [CrossRef]
  7. Q. Lin and G. P. Agrawal, J. Lightwave Technol. 22, 977 (2004).
    [CrossRef]
  8. J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. U.S.A. 97, 4541 (2000).
    [CrossRef]
  9. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, Opt. Lett. 26, 962 (2001).
    [CrossRef]
  10. C. W. Gardiner, Handbook of Stochastic Methods, 2nd ed. (Springer, New York, 1985).

2004 (2)

Y. Semenov and K. Kim, Phys. Rev. Lett. 92, 026601 (2004), and references therein.
[CrossRef]

Q. Lin and G. P. Agrawal, J. Lightwave Technol. 22, 977 (2004).
[CrossRef]

2001 (1)

2000 (1)

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. U.S.A. 97, 4541 (2000).
[CrossRef]

1984 (1)

J. H. Eberly, K. Wódkiewicz, and B. W. Shore, Phys. Rev. A 30, 2381 (1984), and references therein.
[CrossRef]

Agrawal, G. P.

Allen, L.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

Eberly, J. H.

J. H. Eberly, K. Wódkiewicz, and B. W. Shore, Phys. Rev. A 30, 2381 (1984), and references therein.
[CrossRef]

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

Galtarossa, A.

Gardiner, C. W.

C. W. Gardiner, Handbook of Stochastic Methods, 2nd ed. (Springer, New York, 1985).

Gordon, J. P.

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. U.S.A. 97, 4541 (2000).
[CrossRef]

Kim, K.

Y. Semenov and K. Kim, Phys. Rev. Lett. 92, 026601 (2004), and references therein.
[CrossRef]

Kogelnik, H.

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. U.S.A. 97, 4541 (2000).
[CrossRef]

Lin, Q.

Palmieri, L.

Schiano, M.

Semenov, Y.

Y. Semenov and K. Kim, Phys. Rev. Lett. 92, 026601 (2004), and references therein.
[CrossRef]

Shore, B. W.

J. H. Eberly, K. Wódkiewicz, and B. W. Shore, Phys. Rev. A 30, 2381 (1984), and references therein.
[CrossRef]

Slichter, C. P.

C. P. Slichter, Principles of Magnetic Resonance, 3rd ed. (Springer, New York, 1990).
[CrossRef]

Tambosso, T.

Wódkiewicz, K.

J. H. Eberly, K. Wódkiewicz, and B. W. Shore, Phys. Rev. A 30, 2381 (1984), and references therein.
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (1)

Phys. Rev. A (1)

J. H. Eberly, K. Wódkiewicz, and B. W. Shore, Phys. Rev. A 30, 2381 (1984), and references therein.
[CrossRef]

Phys. Rev. Lett. (1)

Y. Semenov and K. Kim, Phys. Rev. Lett. 92, 026601 (2004), and references therein.
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. U.S.A. 97, 4541 (2000).
[CrossRef]

Other (5)

C. W. Gardiner, Handbook of Stochastic Methods, 2nd ed. (Springer, New York, 1985).

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

C. P. Slichter, Principles of Magnetic Resonance, 3rd ed. (Springer, New York, 1990).
[CrossRef]

F. Meier and B. Zakharchenya, eds., Optical Orientation (North-Holland, New York, 1984).

D. Awschalom, D. Loss, and N. Samarth, eds., Semiconductor Spintronics and Quantum Computation (Springer, New York, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

IPD coefficient d for three values of μ = L n L d . Solid and dashed curves show the Faraday and Voigt geometries, respectively. Symbols show the simulation results performed with P 0 = 1.41 W . μ = 0.02 , 1 , 20 corresponding to Ω 2 π = 0.31 , 2.19 , 9.77 THz , respectively.

Fig. 2
Fig. 2

IPD coefficient d as a function of 1 μ = γ e P 0 L d for three fiber lengths in the Faraday geometry.

Fig. 3
Fig. 3

IPD across the signal pulse for three walk-off lengths L w . L = π L n and μ = 1 . Simulation results (circles) use Ω 2 π = 1.09 THz and P 0 = 0.353 W in the same fiber as Fig. 1. The width of the pump pulse is T 0 = FWHM 1.665 .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A p z + δ A p τ = i ω p 2 B σ A p + i γ 3 [ 2 A p A p + A p * A p * ] A p ,
A s z = i ω s 2 B σ A s + 2 i γ 3 [ A p A p + A p A p + A p * A p * ] A s ,
A p z + δ A p τ = i γ e P A p ,
A s z = i γ e 2 P ( 3 + p ̂ σ ) A s i 2 Ω b σ A s ,
s ̂ z = ( Ω b γ e P p ̂ ) × s ̂ .
d z = γ e P U ,
U z = η U + γ e P ( V d ) ,
V z = 3 η V + η d ,

Metrics