Abstract

Carbon nanotubes are the focus of intense research interest because of their unique properties and applications potential. We present a study based on quantum electrodynamics concerning the optical force between a pair of nanotubes under laser irradiance. To identify separate effects associated with the pair orientation and laser beam geometry, two different systems are analyzed. For each, an analytical expression for the laser-induced optical force is determined, and the corresponding magnitude is estimated.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Application of laser-induced incandescence to the detection of carbon nanotubes and carbon nanofibers

Randy L. Vander Wal, Gordon M. Berger, Thomas M. Ticich, and Premal D. Patel
Appl. Opt. 41(27) 5678-5690 (2002)

Gravitation-dependent, thermally-induced self-diffraction in carbon nanotube solutions

Wei Ji, Weizhe Chen, Sanhua Lim, Jianyi Lin, and Zhixin Guo
Opt. Express 14(20) 8958-8966 (2006)

Curvature effect on polarization of light emitted from chiral carbon nanotubes

Thiti Thitapura, Watchara Liewrian, Tula Jutarosaga, and S. Boonchui
Opt. Express 25(21) 25588-25601 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription