Abstract

We report on the observation of widely tunable optical parametric generation in a photonic crystal fiber. The frequency shift of the generated sidebands that arise from modulational instability is strongly dependent on the detuning of the pump from the fiber’s zero-dispersion wavelength. We are able to demonstrate experimentally more than 450nm of sideband tunability as we tune the pump wavelength over 10nm. Excellent agreement has been found between the experimentally measured and theoretically predicted shifts.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Optics and Photonics Series (Academic, San Diego, Calif., 2001).
  2. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 28, 2225 (2003).
    [CrossRef] [PubMed]
  3. C. Lin, W. A. Reed, A. D. Pearson, and H. T. Shang, Opt. Lett. 6, 493 (1981).
    [CrossRef] [PubMed]
  4. C. Lin, W. A. Reed, A. D. Pearson, H. T. Shang, and P. F. Glodis, Electron. Lett. 18, 87 (1982).
    [CrossRef]
  5. G. Cappellini and S. Trillo, J. Opt. Soc. Am. B 8, 824 (1991).
    [CrossRef]
  6. M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 52, 1072 (1995).
    [CrossRef]
  7. R. A. Sammut and S. J. Garth, J. Opt. Soc. Am. B 6, 1732 (1989).
    [CrossRef]

2003 (1)

1995 (1)

M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 52, 1072 (1995).
[CrossRef]

1991 (1)

1989 (1)

1982 (1)

C. Lin, W. A. Reed, A. D. Pearson, H. T. Shang, and P. F. Glodis, Electron. Lett. 18, 87 (1982).
[CrossRef]

1981 (1)

Agrawal, G. P.

M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 52, 1072 (1995).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Optics and Photonics Series (Academic, San Diego, Calif., 2001).

Cappellini, G.

Coen, S.

Garth, S. J.

Glodis, P. F.

C. Lin, W. A. Reed, A. D. Pearson, H. T. Shang, and P. F. Glodis, Electron. Lett. 18, 87 (1982).
[CrossRef]

Harvey, J. D.

Knight, J. C.

Leonhardt, R.

Lin, C.

C. Lin, W. A. Reed, A. D. Pearson, H. T. Shang, and P. F. Glodis, Electron. Lett. 18, 87 (1982).
[CrossRef]

C. Lin, W. A. Reed, A. D. Pearson, and H. T. Shang, Opt. Lett. 6, 493 (1981).
[CrossRef] [PubMed]

McKinstrie, C. J.

M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 52, 1072 (1995).
[CrossRef]

Pearson, A. D.

C. Lin, W. A. Reed, A. D. Pearson, H. T. Shang, and P. F. Glodis, Electron. Lett. 18, 87 (1982).
[CrossRef]

C. Lin, W. A. Reed, A. D. Pearson, and H. T. Shang, Opt. Lett. 6, 493 (1981).
[CrossRef] [PubMed]

Reed, W. A.

C. Lin, W. A. Reed, A. D. Pearson, H. T. Shang, and P. F. Glodis, Electron. Lett. 18, 87 (1982).
[CrossRef]

C. Lin, W. A. Reed, A. D. Pearson, and H. T. Shang, Opt. Lett. 6, 493 (1981).
[CrossRef] [PubMed]

Russell, P. St. J.

Sammut, R. A.

Shang, H. T.

C. Lin, W. A. Reed, A. D. Pearson, H. T. Shang, and P. F. Glodis, Electron. Lett. 18, 87 (1982).
[CrossRef]

C. Lin, W. A. Reed, A. D. Pearson, and H. T. Shang, Opt. Lett. 6, 493 (1981).
[CrossRef] [PubMed]

Trillo, S.

Wadsworth, W. J.

Wong, G. K. L.

Yu, M.

M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 52, 1072 (1995).
[CrossRef]

Electron. Lett. (1)

C. Lin, W. A. Reed, A. D. Pearson, H. T. Shang, and P. F. Glodis, Electron. Lett. 18, 87 (1982).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (2)

Phys. Rev. E (1)

M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 52, 1072 (1995).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Optics and Photonics Series (Academic, San Diego, Calif., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

MI phase-matching diagram for a silica strand with core diameter 1.556 μ m and pump power 50 W . Inset, Close up of the sideband wavelengths over the experimental range of interest.

Fig. 2
Fig. 2

Sideband half-gain bandwidth as a function of pump wavelength near the zero-dispersion wavelength of a silica strand with core diameter 1.556 μ m and pump power 50 W .

Fig. 3
Fig. 3

Experimentally measured sideband wavelengths as a function of pump wavelength for the high and the low group-index modes of fiber A. The pump power used was 60 W . Solid curves, theoretical sideband wavelengths predicted by Eq. (4) for silica strands with effective core diameters of 1.537 μ m (high group-index mode) and 1.556 μ m (low group-index mode). Inset, spectra of light exiting the fiber for pump wavelengths (i) 639, (ii) 641.5, (iii) 644.3, and (iv) 660.5 nm (pump polarized parallel to the high group-index mode).

Fig. 4
Fig. 4

Experimentally measured sideband wavelengths as a function of pump wavelength for the high group-index mode (circles) and the low group-index mode (squares) of fibers A, B, and C. The pump power used was 60 W . Solid curves are the theoretical sideband wavelengths predicted by Eq. (4).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i d A p d z + γ ( A p 2 + 2 A s 2 + 2 A a 2 ) A p + 2 γ A a A s A p * exp [ i Δ β L ( Ω ) z ] = 0 ,
i d A a , s d z + γ ( A a , s 2 + 2 A s , a 2 + 2 A p 2 ) A a , s + γ A p 2 A s , a * exp [ i Δ β L ( Ω ) z ] = 0 .
Δ β L ( Ω ) = β ( ω p + Ω ) + β ( ω p Ω ) 2 β ( ω p ) .
g ( Ω ) = Im { Δ β L ( Ω ) [ Δ β L ( Ω ) + 4 γ P ] } 1 2 .
Δ β L ( Ω ) + 2 γ P = 0 .

Metrics