Abstract

It was proved that the deposition of an overlay material onto a long-period fiber grating causes important shifts in the wavelengths of the typical attenuation bands that are caused by coupling between cladding and core modes [Opt. Lett. 27, 682 (2002) ]. A theoretical model for analyzing a multilayer cylindrical waveguide is presented that permits the phenomenon to be understood and predicted. An overlay of higher refractive index than the cladding starts to guide a mode if a certain thickness value is exceeded. This causes large shifts in the resonance wavelength induced by the grating. One important application of this phenomenon to sensors is enhancement of the sensitivity of a long-period fiber grating to ambient conditions. Theoretical results are corroborated with experimental ones obtained by electrostatic self-assembly.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
    [CrossRef]
  2. S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
    [CrossRef]
  3. H. J. Patrick, A. D. Kersey, and F. Bucholtz, J. Lightwave Technol. 16, 1606 (1998).
    [CrossRef]
  4. Y. G. Han, S. B. Lee, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, Opt. Express 11, 476 (2003), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  5. T. Erdogan, J. Opt. Soc. Am. A 14, 1760 (1997).
    [CrossRef]
  6. D. B. Stegall and T. Erdogan, IEEE Photonics Technol. Lett. 11, 343 (1999).
    [CrossRef]
  7. R. Hou, Z. Ghassemlooy, A. Hassan, C. Lu, and K. P. Dowker, Meas. Sci. Technol. 12, 1709 (2001).
    [CrossRef]
  8. Y. Koymada, IEEE Photonics Technol. Lett. 13, 308 (2001).
    [CrossRef]
  9. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, Opt. Lett. 27, 686 (2002).
    [CrossRef]
  10. M. Achaerandio, F. J. Arregui, and I. R. Matías, Proc. SPIE 5502, 300 (2004).
    [CrossRef]
  11. G. Decher, Science 277, 1232 (1997).
    [CrossRef]
  12. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, J. Lightwave Technol. 21, 218 (2003).
    [CrossRef]
  13. I. Del Villar, F. J. Arregui, and I. R. Matías, ‘‘ESA based in-fiber nanocavity for hydrogen-peroxide detection,’’ IEEE Trans. Nanotechnol. (to be published).

2004 (1)

M. Achaerandio, F. J. Arregui, and I. R. Matías, Proc. SPIE 5502, 300 (2004).
[CrossRef]

2003 (3)

2002 (1)

2001 (2)

R. Hou, Z. Ghassemlooy, A. Hassan, C. Lu, and K. P. Dowker, Meas. Sci. Technol. 12, 1709 (2001).
[CrossRef]

Y. Koymada, IEEE Photonics Technol. Lett. 13, 308 (2001).
[CrossRef]

1999 (1)

D. B. Stegall and T. Erdogan, IEEE Photonics Technol. Lett. 11, 343 (1999).
[CrossRef]

1998 (1)

1997 (2)

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Achaerandio, M.

M. Achaerandio, F. J. Arregui, and I. R. Matías, Proc. SPIE 5502, 300 (2004).
[CrossRef]

Anemogiannis, E.

Arregui, F. J.

M. Achaerandio, F. J. Arregui, and I. R. Matías, Proc. SPIE 5502, 300 (2004).
[CrossRef]

I. Del Villar, F. J. Arregui, and I. R. Matías, ‘‘ESA based in-fiber nanocavity for hydrogen-peroxide detection,’’ IEEE Trans. Nanotechnol. (to be published).

Ashwell, G. J.

Bathia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Bucholtz, F.

Chung, Y.

Decher, G.

G. Decher, Science 277, 1232 (1997).
[CrossRef]

Del Villar, I.

I. Del Villar, F. J. Arregui, and I. R. Matías, ‘‘ESA based in-fiber nanocavity for hydrogen-peroxide detection,’’ IEEE Trans. Nanotechnol. (to be published).

Dowker, K. P.

R. Hou, Z. Ghassemlooy, A. Hassan, C. Lu, and K. P. Dowker, Meas. Sci. Technol. 12, 1709 (2001).
[CrossRef]

Erdogan, T.

D. B. Stegall and T. Erdogan, IEEE Photonics Technol. Lett. 11, 343 (1999).
[CrossRef]

T. Erdogan, J. Opt. Soc. Am. A 14, 1760 (1997).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Gaylord, T. K.

Ghassemlooy, Z.

R. Hou, Z. Ghassemlooy, A. Hassan, C. Lu, and K. P. Dowker, Meas. Sci. Technol. 12, 1709 (2001).
[CrossRef]

Glytsis, E. N.

Han, Y. G.

Hassan, A.

R. Hou, Z. Ghassemlooy, A. Hassan, C. Lu, and K. P. Dowker, Meas. Sci. Technol. 12, 1709 (2001).
[CrossRef]

Hou, R.

R. Hou, Z. Ghassemlooy, A. Hassan, C. Lu, and K. P. Dowker, Meas. Sci. Technol. 12, 1709 (2001).
[CrossRef]

James, S. W.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Kang, J. U.

Kersey, A. D.

Kim, C. S.

Koymada, Y.

Y. Koymada, IEEE Photonics Technol. Lett. 13, 308 (2001).
[CrossRef]

Lee, S. B.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Lu, C.

R. Hou, Z. Ghassemlooy, A. Hassan, C. Lu, and K. P. Dowker, Meas. Sci. Technol. 12, 1709 (2001).
[CrossRef]

Matías, I. R.

M. Achaerandio, F. J. Arregui, and I. R. Matías, Proc. SPIE 5502, 300 (2004).
[CrossRef]

I. Del Villar, F. J. Arregui, and I. R. Matías, ‘‘ESA based in-fiber nanocavity for hydrogen-peroxide detection,’’ IEEE Trans. Nanotechnol. (to be published).

Paek, U. C.

Patrick, H. J.

Rees, N. D.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Stegall, D. B.

D. B. Stegall and T. Erdogan, IEEE Photonics Technol. Lett. 11, 343 (1999).
[CrossRef]

Tatam, R. P.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

D. B. Stegall and T. Erdogan, IEEE Photonics Technol. Lett. 11, 343 (1999).
[CrossRef]

Y. Koymada, IEEE Photonics Technol. Lett. 13, 308 (2001).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (2)

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

R. Hou, Z. Ghassemlooy, A. Hassan, C. Lu, and K. P. Dowker, Meas. Sci. Technol. 12, 1709 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

M. Achaerandio, F. J. Arregui, and I. R. Matías, Proc. SPIE 5502, 300 (2004).
[CrossRef]

Science (1)

G. Decher, Science 277, 1232 (1997).
[CrossRef]

Other (1)

I. Del Villar, F. J. Arregui, and I. R. Matías, ‘‘ESA based in-fiber nanocavity for hydrogen-peroxide detection,’’ IEEE Trans. Nanotechnol. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transverse and longitudinal sections of a LPFG structure, showing deposition of an overlay upon the cladding.

Fig. 2
Fig. 2

Shift in resonance wavelength caused by coupling between the core mode and the seventh ( LP 0.7 ) and the eighth ( LP 0.8 ) cladding modes of the structure as a function of the thickness of the overlay. Open square, experimental values; solid curves, theoretical values.

Fig. 3
Fig. 3

Transmission spectra of a LPFG as a function of three overlay thickness values: 0, 266, and 364 nm . (a) Experiment; (b) theory.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β 01 ( λ ) + s 0 ζ 01 , 01 ( λ ) [ β 0 j ( λ ) + s 0 ζ 0 j , 0 j ( λ ) ] = 2 π Λ ,

Metrics