Abstract

Photothermal effects in passive Fabry–Perot resonators are caused by the conversion of circulating optical energy into heat as a result of absorption. This results in thermal change in the resonator’s optical path length, the round-trip phase, and hence the resonance condition. We describe a simplified dynamic numerical model for photothermal effects in passive fiber Bragg grating resonators and present results of their experimental observation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Canning and M. G. Sceats, Electron. Lett. 30, 16 (1994).
    [CrossRef]
  2. M. Gupta, H. Jiao, and A. O’Keefe, Opt. Lett. 27, 21 (2002).
    [CrossRef]
  3. A. Othenos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecom- munications and Sensing (Aretch House, Norwood, Mass., 1999), and references therein.
  4. J. H. Chow, I. C. M. Littler, G. de Vine, D. E. McClelland, and M. B. Gray, arXivi.org e-Print archive, physics/0411101, November 9, 2004, http://www.arxiv.org/abs/physics/0411101.
  5. J. T. Kringlebotn, J. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 24 (1994).
    [CrossRef]
  6. W. S. Man, Y. Z. Xu, and H. Y. Tam, IEEE Photonics Technol. Lett. 11, 11 (1999).
    [CrossRef]
  7. S. Radic, N. George, and G. P. Agrawal, Opt. Lett. 19, 21 (1994).
  8. V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys. Lett. A 264, 1 (1999).
    [CrossRef]
  9. M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, Phys. Rev. D 63, 082003 (2001).
    [CrossRef]
  10. B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, and D. E. McClelland, Phys. Rev. A 69, 051801 (2004).
    [CrossRef]

2004

B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, and D. E. McClelland, Phys. Rev. A 69, 051801 (2004).
[CrossRef]

2002

M. Gupta, H. Jiao, and A. O’Keefe, Opt. Lett. 27, 21 (2002).
[CrossRef]

2001

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, Phys. Rev. D 63, 082003 (2001).
[CrossRef]

1999

V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys. Lett. A 264, 1 (1999).
[CrossRef]

W. S. Man, Y. Z. Xu, and H. Y. Tam, IEEE Photonics Technol. Lett. 11, 11 (1999).
[CrossRef]

1994

S. Radic, N. George, and G. P. Agrawal, Opt. Lett. 19, 21 (1994).

J. T. Kringlebotn, J. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 24 (1994).
[CrossRef]

J. Canning and M. G. Sceats, Electron. Lett. 30, 16 (1994).
[CrossRef]

Agrawal, G. P.

S. Radic, N. George, and G. P. Agrawal, Opt. Lett. 19, 21 (1994).

Archambault, J.

J. T. Kringlebotn, J. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 24 (1994).
[CrossRef]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys. Lett. A 264, 1 (1999).
[CrossRef]

Canning, J.

J. Canning and M. G. Sceats, Electron. Lett. 30, 16 (1994).
[CrossRef]

Cerdonio, M.

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, Phys. Rev. D 63, 082003 (2001).
[CrossRef]

Conti, L.

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, Phys. Rev. D 63, 082003 (2001).
[CrossRef]

George, N.

S. Radic, N. George, and G. P. Agrawal, Opt. Lett. 19, 21 (1994).

Gorodetsky, M. L.

V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys. Lett. A 264, 1 (1999).
[CrossRef]

Gray, M. B.

B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, and D. E. McClelland, Phys. Rev. A 69, 051801 (2004).
[CrossRef]

Gupta, M.

M. Gupta, H. Jiao, and A. O’Keefe, Opt. Lett. 27, 21 (2002).
[CrossRef]

Heidmann, A.

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, Phys. Rev. D 63, 082003 (2001).
[CrossRef]

Jiao, H.

M. Gupta, H. Jiao, and A. O’Keefe, Opt. Lett. 27, 21 (2002).
[CrossRef]

Kalli, K.

A. Othenos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecom- munications and Sensing (Aretch House, Norwood, Mass., 1999), and references therein.

Kringlebotn, J. T.

J. T. Kringlebotn, J. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 24 (1994).
[CrossRef]

Man, W. S.

W. S. Man, Y. Z. Xu, and H. Y. Tam, IEEE Photonics Technol. Lett. 11, 11 (1999).
[CrossRef]

McClelland, D. E.

B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, and D. E. McClelland, Phys. Rev. A 69, 051801 (2004).
[CrossRef]

Mow-Lowry, C. M.

B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, and D. E. McClelland, Phys. Rev. A 69, 051801 (2004).
[CrossRef]

O’Keefe, A.

M. Gupta, H. Jiao, and A. O’Keefe, Opt. Lett. 27, 21 (2002).
[CrossRef]

Othenos, A.

A. Othenos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecom- munications and Sensing (Aretch House, Norwood, Mass., 1999), and references therein.

Payne, D. N.

J. T. Kringlebotn, J. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 24 (1994).
[CrossRef]

Pinard, M.

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, Phys. Rev. D 63, 082003 (2001).
[CrossRef]

Radic, S.

S. Radic, N. George, and G. P. Agrawal, Opt. Lett. 19, 21 (1994).

Reekie, L.

J. T. Kringlebotn, J. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 24 (1994).
[CrossRef]

Sceats, M. G.

J. Canning and M. G. Sceats, Electron. Lett. 30, 16 (1994).
[CrossRef]

Sheard, B. S.

B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, and D. E. McClelland, Phys. Rev. A 69, 051801 (2004).
[CrossRef]

Tam, H. Y.

W. S. Man, Y. Z. Xu, and H. Y. Tam, IEEE Photonics Technol. Lett. 11, 11 (1999).
[CrossRef]

Vyatchanin, S. P.

V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys. Lett. A 264, 1 (1999).
[CrossRef]

Xu, Y. Z.

W. S. Man, Y. Z. Xu, and H. Y. Tam, IEEE Photonics Technol. Lett. 11, 11 (1999).
[CrossRef]

Electron. Lett.

J. Canning and M. G. Sceats, Electron. Lett. 30, 16 (1994).
[CrossRef]

IEEE Photonics Technol. Lett.

W. S. Man, Y. Z. Xu, and H. Y. Tam, IEEE Photonics Technol. Lett. 11, 11 (1999).
[CrossRef]

Opt. Lett.

S. Radic, N. George, and G. P. Agrawal, Opt. Lett. 19, 21 (1994).

M. Gupta, H. Jiao, and A. O’Keefe, Opt. Lett. 27, 21 (2002).
[CrossRef]

J. T. Kringlebotn, J. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 24 (1994).
[CrossRef]

Phys. Lett. A

V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys. Lett. A 264, 1 (1999).
[CrossRef]

Phys. Rev. A

B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, and D. E. McClelland, Phys. Rev. A 69, 051801 (2004).
[CrossRef]

Phys. Rev. D

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, Phys. Rev. D 63, 082003 (2001).
[CrossRef]

Other

A. Othenos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecom- munications and Sensing (Aretch House, Norwood, Mass., 1999), and references therein.

J. H. Chow, I. C. M. Littler, G. de Vine, D. E. McClelland, and M. B. Gray, arXivi.org e-Print archive, physics/0411101, November 9, 2004, http://www.arxiv.org/abs/physics/0411101.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Simulated transmissivity scans Tx versus time of a FFP interrogated with a tunable laser with (i) no photothermal effect, (ii) a +ve d ν d t , and (iii) a −ve d ν d t ; Tx frequency detuning from cold resonance when (b) d ν d t was varied, with P inc fixed at 8 mW ; and (c) for different P inc , while d ν d t was fixed at 0.5 GHz s . Assumed parameters: R = 95.5 % , α = 0.01 , τ = 0.4 s , and γ = 1.2 × 10 3 J 1 . Refer to the legend for P inc and d ν d t of each curve.

Fig. 2
Fig. 2

Schematic of the FFP interrogation experiment to observe photothermal effects. Tx is the photodetector for the transmitted light; its output voltage was measured with a digital oscilloscope.

Fig. 3
Fig. 3

Summary of experimental results under five different experimental conditions. (a)–(d) P inc = 8 mW but at various d ν d t ; (e) P inc = 2 mW and d ν d t = 0.5 GHz s , which was the same scan rate as (d). Refer to main text for the details of each case.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

φ ( t ) = 4 π ν ( t ) d ( t ) c ,
d ( t ) = [ 1 + β Δ T ( t ) ] d 0 ,
h ( t ) = ( 1 τ ) exp ( t τ ) .
Δ T ( t ) = ( α C ) P circ ( t ) h ( t ) ,
P trans ( t ) = ( 1 α ) ( 1 R ) P circ ,
d ( t ) = [ 1 γ P trans ( t ) h ( t ) ] d 0 .
P trans ( t ) P inc ( t ) = ( 1 R ) 2 A ( 1 R A ) 2 + 4 R A sin 2 [ φ ( t ) 2 ] ,

Metrics