Abstract

Photothermal effects in passive Fabry–Perot resonators are caused by the conversion of circulating optical energy into heat as a result of absorption. This results in thermal change in the resonator’s optical path length, the round-trip phase, and hence the resonance condition. We describe a simplified dynamic numerical model for photothermal effects in passive fiber Bragg grating resonators and present results of their experimental observation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Canning and M. G. Sceats, Electron. Lett. 30, 16 (1994).
    [Crossref]
  2. M. Gupta, H. Jiao, and A. O’Keefe, Opt. Lett. 27, 21 (2002).
    [Crossref]
  3. A. Othenos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecom- munications and Sensing (Aretch House, Norwood, Mass., 1999), and references therein.
  4. J. H. Chow, I. C. M. Littler, G. de Vine, D. E. McClelland, and M. B. Gray, arXivi.org e-Print archive, physics/0411101, November 9, 2004, http://www.arxiv.org/abs/physics/0411101.
  5. J. T. Kringlebotn, J. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 24 (1994).
    [Crossref]
  6. W. S. Man, Y. Z. Xu, and H. Y. Tam, IEEE Photonics Technol. Lett. 11, 11 (1999).
    [Crossref]
  7. S. Radic, N. George, and G. P. Agrawal, Opt. Lett. 19, 21 (1994).
  8. V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys. Lett. A 264, 1 (1999).
    [Crossref]
  9. M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, Phys. Rev. D 63, 082003 (2001).
    [Crossref]
  10. B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, and D. E. McClelland, Phys. Rev. A 69, 051801 (2004).
    [Crossref]

2004 (1)

B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, and D. E. McClelland, Phys. Rev. A 69, 051801 (2004).
[Crossref]

2002 (1)

M. Gupta, H. Jiao, and A. O’Keefe, Opt. Lett. 27, 21 (2002).
[Crossref]

2001 (1)

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, Phys. Rev. D 63, 082003 (2001).
[Crossref]

1999 (2)

V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys. Lett. A 264, 1 (1999).
[Crossref]

W. S. Man, Y. Z. Xu, and H. Y. Tam, IEEE Photonics Technol. Lett. 11, 11 (1999).
[Crossref]

1994 (3)

S. Radic, N. George, and G. P. Agrawal, Opt. Lett. 19, 21 (1994).

J. T. Kringlebotn, J. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 24 (1994).
[Crossref]

J. Canning and M. G. Sceats, Electron. Lett. 30, 16 (1994).
[Crossref]

Agrawal, G. P.

S. Radic, N. George, and G. P. Agrawal, Opt. Lett. 19, 21 (1994).

Archambault, J.

J. T. Kringlebotn, J. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 24 (1994).
[Crossref]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys. Lett. A 264, 1 (1999).
[Crossref]

Canning, J.

J. Canning and M. G. Sceats, Electron. Lett. 30, 16 (1994).
[Crossref]

Cerdonio, M.

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, Phys. Rev. D 63, 082003 (2001).
[Crossref]

Conti, L.

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, Phys. Rev. D 63, 082003 (2001).
[Crossref]

George, N.

S. Radic, N. George, and G. P. Agrawal, Opt. Lett. 19, 21 (1994).

Gorodetsky, M. L.

V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys. Lett. A 264, 1 (1999).
[Crossref]

Gray, M. B.

B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, and D. E. McClelland, Phys. Rev. A 69, 051801 (2004).
[Crossref]

Gupta, M.

M. Gupta, H. Jiao, and A. O’Keefe, Opt. Lett. 27, 21 (2002).
[Crossref]

Heidmann, A.

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, Phys. Rev. D 63, 082003 (2001).
[Crossref]

Jiao, H.

M. Gupta, H. Jiao, and A. O’Keefe, Opt. Lett. 27, 21 (2002).
[Crossref]

Kalli, K.

A. Othenos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecom- munications and Sensing (Aretch House, Norwood, Mass., 1999), and references therein.

Kringlebotn, J. T.

J. T. Kringlebotn, J. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 24 (1994).
[Crossref]

Man, W. S.

W. S. Man, Y. Z. Xu, and H. Y. Tam, IEEE Photonics Technol. Lett. 11, 11 (1999).
[Crossref]

McClelland, D. E.

B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, and D. E. McClelland, Phys. Rev. A 69, 051801 (2004).
[Crossref]

Mow-Lowry, C. M.

B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, and D. E. McClelland, Phys. Rev. A 69, 051801 (2004).
[Crossref]

O’Keefe, A.

M. Gupta, H. Jiao, and A. O’Keefe, Opt. Lett. 27, 21 (2002).
[Crossref]

Othenos, A.

A. Othenos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecom- munications and Sensing (Aretch House, Norwood, Mass., 1999), and references therein.

Payne, D. N.

J. T. Kringlebotn, J. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 24 (1994).
[Crossref]

Pinard, M.

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, Phys. Rev. D 63, 082003 (2001).
[Crossref]

Radic, S.

S. Radic, N. George, and G. P. Agrawal, Opt. Lett. 19, 21 (1994).

Reekie, L.

J. T. Kringlebotn, J. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 24 (1994).
[Crossref]

Sceats, M. G.

J. Canning and M. G. Sceats, Electron. Lett. 30, 16 (1994).
[Crossref]

Sheard, B. S.

B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, and D. E. McClelland, Phys. Rev. A 69, 051801 (2004).
[Crossref]

Tam, H. Y.

W. S. Man, Y. Z. Xu, and H. Y. Tam, IEEE Photonics Technol. Lett. 11, 11 (1999).
[Crossref]

Vyatchanin, S. P.

V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys. Lett. A 264, 1 (1999).
[Crossref]

Xu, Y. Z.

W. S. Man, Y. Z. Xu, and H. Y. Tam, IEEE Photonics Technol. Lett. 11, 11 (1999).
[Crossref]

Electron. Lett. (1)

J. Canning and M. G. Sceats, Electron. Lett. 30, 16 (1994).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. S. Man, Y. Z. Xu, and H. Y. Tam, IEEE Photonics Technol. Lett. 11, 11 (1999).
[Crossref]

Opt. Lett. (3)

S. Radic, N. George, and G. P. Agrawal, Opt. Lett. 19, 21 (1994).

M. Gupta, H. Jiao, and A. O’Keefe, Opt. Lett. 27, 21 (2002).
[Crossref]

J. T. Kringlebotn, J. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 24 (1994).
[Crossref]

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys. Lett. A 264, 1 (1999).
[Crossref]

Phys. Rev. A (1)

B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, and D. E. McClelland, Phys. Rev. A 69, 051801 (2004).
[Crossref]

Phys. Rev. D (1)

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, Phys. Rev. D 63, 082003 (2001).
[Crossref]

Other (2)

A. Othenos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecom- munications and Sensing (Aretch House, Norwood, Mass., 1999), and references therein.

J. H. Chow, I. C. M. Littler, G. de Vine, D. E. McClelland, and M. B. Gray, arXivi.org e-Print archive, physics/0411101, November 9, 2004, http://www.arxiv.org/abs/physics/0411101.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Simulated transmissivity scans Tx versus time of a FFP interrogated with a tunable laser with (i) no photothermal effect, (ii) a +ve d ν d t , and (iii) a −ve d ν d t ; Tx frequency detuning from cold resonance when (b) d ν d t was varied, with P inc fixed at 8 mW ; and (c) for different P inc , while d ν d t was fixed at 0.5 GHz s . Assumed parameters: R = 95.5 % , α = 0.01 , τ = 0.4 s , and γ = 1.2 × 10 3 J 1 . Refer to the legend for P inc and d ν d t of each curve.

Fig. 2
Fig. 2

Schematic of the FFP interrogation experiment to observe photothermal effects. Tx is the photodetector for the transmitted light; its output voltage was measured with a digital oscilloscope.

Fig. 3
Fig. 3

Summary of experimental results under five different experimental conditions. (a)–(d) P inc = 8 mW but at various d ν d t ; (e) P inc = 2 mW and d ν d t = 0.5 GHz s , which was the same scan rate as (d). Refer to main text for the details of each case.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

φ ( t ) = 4 π ν ( t ) d ( t ) c ,
d ( t ) = [ 1 + β Δ T ( t ) ] d 0 ,
h ( t ) = ( 1 τ ) exp ( t τ ) .
Δ T ( t ) = ( α C ) P circ ( t ) h ( t ) ,
P trans ( t ) = ( 1 α ) ( 1 R ) P circ ,
d ( t ) = [ 1 γ P trans ( t ) h ( t ) ] d 0 .
P trans ( t ) P inc ( t ) = ( 1 R ) 2 A ( 1 R A ) 2 + 4 R A sin 2 [ φ ( t ) 2 ] ,

Metrics