Abstract

Combining a dc and a short pulse (1ns) as the probe beam in the pump–probe configuration of Brillouin-based distributed sensors allows us to represent the Brillouin spectrum as a top Lorentzian-like portion and a bottom Gaussian-like portion. Because of the interaction of these two parts, the Lorentzian-like portion carries spatial information that can be extracted within centimeter spatial resolution. Using this information, we develop a spectrum deconvolution method, which considers the location correlation of the strain distribution, to find the number of Brillouin peaks and their frequencies in the top Lorentzian-like portion and hence achieve accurate strain information. An optimum level of dc to pulse power for the best signal and position detection capability is discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Bao, A. Brown, M. DeMerchant, and J. Smith, Opt. Lett. 24, 510 (1999).
    [CrossRef]
  2. T. Kurashima, T. Horiguchi, and M. Tateda, Appl. Opt. 29, 2219 (1990).
    [CrossRef] [PubMed]
  3. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
    [CrossRef]
  4. S. Afshar V., G. A. Ferrier, X. Bao, and L. Chen, Opt. Lett. 28, 1418 (2003).
    [CrossRef]
  5. V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, Opt. Lett. 25, 156 (2000).
    [CrossRef]

2003 (1)

2000 (1)

1999 (1)

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

1990 (1)

Afshar V., S.

Bao, X.

Brown, A.

Chen, L.

DeMerchant, M.

Ferrier, G. A.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

T. Kurashima, T. Horiguchi, and M. Tateda, Appl. Opt. 29, 2219 (1990).
[CrossRef] [PubMed]

Jackson, D. A.

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

T. Kurashima, T. Horiguchi, and M. Tateda, Appl. Opt. 29, 2219 (1990).
[CrossRef] [PubMed]

Lecoeuche, V.

Pannell, C. N.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Smith, J.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

T. Kurashima, T. Horiguchi, and M. Tateda, Appl. Opt. 29, 2219 (1990).
[CrossRef] [PubMed]

Webb, D. J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical twofold Brillouin profiles of a point inside a 600 - cm fiber for different extinction ratios. Finite R x curves consist of both Gaussian-like and Lorentzian-like portions labeled as GP and LP.

Fig. 2
Fig. 2

Brillouin profile shift as a function of position inside a 150 - cm fiber with a 5.5 - cm strained section. Real (R and dashed lines) and estimated (E) strain sections are shown.

Fig. 3
Fig. 3

a 1 and f 1 as a function of position. Dashed lines show the real strained section extending between 71.9 and 77.4 cm , and the solid curve indicates the estimated strain center and its frequency shift.

Fig. 4
Fig. 4

LP/GP and maximum frequency shifts for the example in Fig. 2 are shown as a function of R x .

Tables (1)

Tables Icon

Table 1 Results for Detection of a 5.5 - cm Strained Section (Extending from 71.9 to 77.4) with a Frequency Shift of 3.2 MHz

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ ν B = Δ ν B 2 ( SNR ) 1 4 ,

Metrics