Abstract

Combining a dc and a short pulse (1ns) as the probe beam in the pump–probe configuration of Brillouin-based distributed sensors allows us to represent the Brillouin spectrum as a top Lorentzian-like portion and a bottom Gaussian-like portion. Because of the interaction of these two parts, the Lorentzian-like portion carries spatial information that can be extracted within centimeter spatial resolution. Using this information, we develop a spectrum deconvolution method, which considers the location correlation of the strain distribution, to find the number of Brillouin peaks and their frequencies in the top Lorentzian-like portion and hence achieve accurate strain information. An optimum level of dc to pulse power for the best signal and position detection capability is discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Differential pulse-width pair BOTDA for high spatial resolution sensing

Wenhai Li, Xiaoyi Bao, Yun Li, and Liang Chen
Opt. Express 16(26) 21616-21625 (2008)

Using pulse with a dark base to achieve high spatial and frequency resolution for the distributed Brillouin sensor

Feng Wang, Xiaoyi Bao, Liang Chen, Yun Li, Jeffrey Snoddy, and Xuping Zhang
Opt. Lett. 33(22) 2707-2709 (2008)

Coherent probe-pump-based Brillouin sensor for centimeter-crack detection

Lufan Zou, Xiaoyi Bao, Yidun Wan, and Liang Chen
Opt. Lett. 30(4) 370-372 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription