Abstract

Spatiotemporal measurements of a near-single-cycle terahertz pulse emitted from a photoconductive switch terahertz (THz) source show the effects of spherical aberration and surface waves on the pulse shape. The measured phase front has a swallow-tail shape described by catastrophe theory that contributes to the concentric ring structure of THz beam profiles. A time-of-flight model shows that the pulse shape is due to propagation along a cusp caustic and enhancement of the wings of the swallow-tail pulse is caused by surface waves.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Bor, Opt. Lett. 14, 119 (1989).
    [CrossRef] [PubMed]
  2. D. M. Mittleman, ed., Sensing with Terahertz Radiation (Springer-Verlag, Berlin, 2003).
    [CrossRef]
  3. M. T. Reiten, S. A. Harmon, and R. A. Cheville, J. Opt. Soc. Am. B 20, 2215 (2003).
    [CrossRef]
  4. S. Hunsche, S. Feng, H. G. Winful, A. Leitenstorfer, M. C. Nuss, and E. P. Ippen, J. Opt. Soc. Am. A 16, 2025 (1999).
    [CrossRef]
  5. J. Van Rudd and D. M. Mittleman, J. Opt. Soc. Am. B 19, 319 (2002).
    [CrossRef]
  6. A. B. Ruffin, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, T. B. Norris, and J. V. Rudd, Opt. Lett. 26, 681 (2001).
    [CrossRef]
  7. P. L. Marston, in Physical Acoustics (Academic, New York, 1992), pp. 2–221.
  8. P. U. Jepsen and S. R. Keiding, Opt. Lett. 20, 807 (1995).
    [CrossRef] [PubMed]
  9. W. Lukosz and R. E. Kunz, J. Opt. Soc. Am. 67, 1607 (1977).
    [CrossRef]
  10. L. Felsen, J. Opt. Soc. Am. 66, 751 (1976).
    [CrossRef]
  11. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, New York, 1999).
    [CrossRef]
  12. J. A. Lock, J. Opt. Soc. Am. A 18, 3085 (2001).
    [CrossRef]
  13. V. I. Arnold, Catastrophe Theory, 3rd ed. (Springer-Verlag, Berlin, 1992).
    [CrossRef]
  14. T. Poston and I. N. Stewart, Catastrophe Theory and Its Applications (Pitman, London, 1978).
  15. G. Dangelmyer and W. Guttinger, Geophys. J. R. Astron. Soc. 71, 79 (1982).
    [CrossRef]
  16. M. G. Brown, J. Acoust. Soc. Am. 79, 1367 (1986).
    [CrossRef]

2003 (1)

2002 (1)

2001 (2)

1999 (1)

1995 (1)

1989 (1)

1986 (1)

M. G. Brown, J. Acoust. Soc. Am. 79, 1367 (1986).
[CrossRef]

1982 (1)

G. Dangelmyer and W. Guttinger, Geophys. J. R. Astron. Soc. 71, 79 (1982).
[CrossRef]

1977 (1)

1976 (1)

Arnold, V. I.

V. I. Arnold, Catastrophe Theory, 3rd ed. (Springer-Verlag, Berlin, 1992).
[CrossRef]

Bor, Z.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, New York, 1999).
[CrossRef]

Brown, M. G.

M. G. Brown, J. Acoust. Soc. Am. 79, 1367 (1986).
[CrossRef]

Cheville, R. A.

Dangelmyer, G.

G. Dangelmyer and W. Guttinger, Geophys. J. R. Astron. Soc. 71, 79 (1982).
[CrossRef]

Decker, J.

Felsen, L.

Feng, S.

Guttinger, W.

G. Dangelmyer and W. Guttinger, Geophys. J. R. Astron. Soc. 71, 79 (1982).
[CrossRef]

Harmon, S. A.

Hunsche, S.

Ippen, E. P.

Jepsen, P. U.

Keiding, S. R.

Kunz, R. E.

Le Hors, L.

Leitenstorfer, A.

Lock, J. A.

Lukosz, W.

Marston, P. L.

P. L. Marston, in Physical Acoustics (Academic, New York, 1992), pp. 2–221.

Mittleman, D. M.

Norris, T. B.

Nuss, M. C.

Poston, T.

T. Poston and I. N. Stewart, Catastrophe Theory and Its Applications (Pitman, London, 1978).

Reiten, M. T.

Rudd, J. V.

Ruffin, A. B.

Sanchez-Palencia, L.

Stewart, I. N.

T. Poston and I. N. Stewart, Catastrophe Theory and Its Applications (Pitman, London, 1978).

Van Rudd, J.

Whitaker, J. F.

Winful, H. G.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, New York, 1999).
[CrossRef]

Geophys. J. R. Astron. Soc. (1)

G. Dangelmyer and W. Guttinger, Geophys. J. R. Astron. Soc. 71, 79 (1982).
[CrossRef]

J. Acoust. Soc. Am. (1)

M. G. Brown, J. Acoust. Soc. Am. 79, 1367 (1986).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

Opt. Lett. (3)

Other (5)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, New York, 1999).
[CrossRef]

D. M. Mittleman, ed., Sensing with Terahertz Radiation (Springer-Verlag, Berlin, 2003).
[CrossRef]

P. L. Marston, in Physical Acoustics (Academic, New York, 1992), pp. 2–221.

V. I. Arnold, Catastrophe Theory, 3rd ed. (Springer-Verlag, Berlin, 1992).
[CrossRef]

T. Poston and I. N. Stewart, Catastrophe Theory and Its Applications (Pitman, London, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Spatiotemporal THz measurement system. (b) Collimating silicon lens illustrating regions i, ii, and iii, the field patterns for S and P polarization, and angles θ, γ, and ϕ.

Fig. 2
Fig. 2

(a) THz electric field at 16 mm with overlay of measured pulses at y = 0 , 2, and 4 mm . Solid line in inset is time-of-flight model prediction. (b) Spatial amplitude distribution of the field at five discrete frequencies. The inset is the calculated field distribution. (c) THz field at 3.2 mm ; arrows show annular field distribution near the surface of the lens. Inset shows the time-of-flight model predictions of pulse structure.

Fig. 3
Fig. 3

(a) Stationary phase analysis of the collimating lens system. The inset is the pulse front surface corresponding to this lens. The ray diagrams (above) and pulse front surfaces for focusing and aplanatic hyperhemispherical lenses are shown in (b) and (c), respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ψ = n L ( R 2 + w 2 + 2 R w cos β ) 1 2 + [ ( R sin β z ) 2 + ( y + R R cos β ) 2 ] 1 2 ,

Metrics