Abstract

We demonstrate a fourth-order polarimeter that employs two-photon detection to measure the fourth-order polarization coherency matrix (FOCM) of an optical signal. We measure the FOCM of picosecond pulses subjected to polarization mode dispersion (PMD). The fourth-order polarimeter distinguishes different PMD states even when the state of polarization, including the degree of polarization, is constant.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for instances R. A. Chipman, in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, and references therein.
  2. L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
    [CrossRef]
  3. J. M. Roth, T. E. Murphy, and C. Xu, Opt. Lett. 27, 2076 (2002).
    [CrossRef]
  4. S. Wielandy, M. Fishteyn, and B. Zhu, J. Lightwave Technol. 22, 784 (2004).
    [CrossRef]
  5. C. Brosseau and R. Barakat, Opt. Commun. 91, 408 (1992).
    [CrossRef]
  6. D. M. Klyshko, JETP 84, 1065 (1997).
    [CrossRef]
  7. D. I. Guzun and A. N. Penin, Proc. SPIE 2799, 249 (1996).
    [CrossRef]
  8. F. Roy, C. Francia, F. Bruyere, and D. Penninckx, in Optical Fiber Communication Conference (OFC), OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 275–278.

2004

2002

1997

D. M. Klyshko, JETP 84, 1065 (1997).
[CrossRef]

1996

D. I. Guzun and A. N. Penin, Proc. SPIE 2799, 249 (1996).
[CrossRef]

1992

C. Brosseau and R. Barakat, Opt. Commun. 91, 408 (1992).
[CrossRef]

1965

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
[CrossRef]

Barakat, R.

C. Brosseau and R. Barakat, Opt. Commun. 91, 408 (1992).
[CrossRef]

Brosseau, C.

C. Brosseau and R. Barakat, Opt. Commun. 91, 408 (1992).
[CrossRef]

Bruyere, F.

F. Roy, C. Francia, F. Bruyere, and D. Penninckx, in Optical Fiber Communication Conference (OFC), OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 275–278.

Chipman, R. A.

See, for instances R. A. Chipman, in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, and references therein.

Fishteyn, M.

Francia, C.

F. Roy, C. Francia, F. Bruyere, and D. Penninckx, in Optical Fiber Communication Conference (OFC), OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 275–278.

Guzun, D. I.

D. I. Guzun and A. N. Penin, Proc. SPIE 2799, 249 (1996).
[CrossRef]

Klyshko, D. M.

D. M. Klyshko, JETP 84, 1065 (1997).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
[CrossRef]

Murphy, T. E.

Penin, A. N.

D. I. Guzun and A. N. Penin, Proc. SPIE 2799, 249 (1996).
[CrossRef]

Penninckx, D.

F. Roy, C. Francia, F. Bruyere, and D. Penninckx, in Optical Fiber Communication Conference (OFC), OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 275–278.

Roth, J. M.

Roy, F.

F. Roy, C. Francia, F. Bruyere, and D. Penninckx, in Optical Fiber Communication Conference (OFC), OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 275–278.

Wielandy, S.

Wolf, E.

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
[CrossRef]

Xu, C.

Zhu, B.

J. Lightwave Technol.

JETP

D. M. Klyshko, JETP 84, 1065 (1997).
[CrossRef]

Opt. Commun.

C. Brosseau and R. Barakat, Opt. Commun. 91, 408 (1992).
[CrossRef]

Opt. Lett.

Proc. SPIE

D. I. Guzun and A. N. Penin, Proc. SPIE 2799, 249 (1996).
[CrossRef]

Rev. Mod. Phys.

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
[CrossRef]

Other

See, for instances R. A. Chipman, in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, and references therein.

F. Roy, C. Francia, F. Bruyere, and D. Penninckx, in Optical Fiber Communication Conference (OFC), OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 275–278.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Measured a, P linear 2 ( a ̂ ) and b, P two - photon ( a ̂ ) for pulses with first-order PMD. c, Simulated S ( t ) and P two - photon ( a ̂ ) for a Gaussian pulse with similar PMD. d, Power versus time after the analyzer for three angles of a ̂ with respect to the DGD PSP.

Fig. 3
Fig. 3

P two - photon P linear 2 (normalized to 1) for 4 - ps pulses launched into the DGD element. Top row, data; bottom row, fit using Eqs. (2, 3). The DGD (ps) is a, 3.67, b, 5.10, and c, 6.50. PC1 and PC2 are adjusted so that the SOP is constant and the DOP = 70 % ( ± 2 % ) in each case. The lines indicates the Stokes vector calculated from the fit of the linear data.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q i j D = k l M i k D M j l D Q k l = [ Q 00 ( Q 01 D Q 02 D Q 03 D ) ( Q 10 D Q 20 D Q 30 D ) ( Q 11 D 0 0 0 Q 22 D 0 0 0 Q 33 D ) ] .
P linear ( a ̂ ) = 1 2 ( S 0 + i = 1 3 S i a ̂ i ) .
P two - photon ( a ̂ ) = 1 4 ( Q 00 + 2 i = 1 3 Q 0 i a ̂ i + i = 1 3 j = 1 3 Q i j a ̂ i a ̂ j ) .

Metrics