Abstract

I investigate theoretically the performance limits for all-optical switching devices incorporating photonic crystals made of nonlinear materials operating at high bit rates. I compare two switching techniques—shifting of the photonic bandgap and the more traditional interferometric method enhanced by slow wave propagation in photonic crystals—and show that the latter always has an advantage. I also demonstrate that the benefits provided by the photonic crystal in the interferometer are still severely limited by the dispersion and become significant only in materials combining high nonlinearity, high index contrast, and high damage threshold.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [Crossref] [PubMed]
  2. W. Chen and D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).
    [Crossref] [PubMed]
  3. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, Phys. Rev. Lett. 73, 1368 (1994).
    [Crossref] [PubMed]
  4. M. Scalora, R. J. Flynn, S. B. Reinhardt, and R. L. Fork, Phys. Rev. E 54, R1078 (1996).
    [Crossref]
  5. S. Lan, S. Nishikawa, and O. Wada, Appl. Phys. Lett. 78, 2101 (2003).
    [Crossref]
  6. A. Melloni, F. Morichetti, and M. Martnelli, Opt. Quantum Electron. 35, 365 (2003).
    [Crossref]
  7. M. Soljacic, S. G. Johnson, S. Fan, M. Inanescu, E. Ippen, and J. D. Joannopulos, J. Opt. Soc. Am. B 19, 2052 (2002).
    [Crossref]
  8. M. D. Nielsen, C. Jacobsen, N. A. Mortensen, J. R. Folkenberg, and H. R. Simonsen, Opt. Express 12, 1372 (2004), http://www.opticsexpress.org.
    [Crossref] [PubMed]
  9. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), p. 17.
  10. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Ashakawa, N. Kawai, and K. Inoue, IEEE J. Quantum Electron. 38, 837 (2002).
    [Crossref]
  11. J. B. Khurgin, “Optical buffers based on slow light in EIT media and coupled resonator structures—comparative analysis,” J. Opt. Soc. Am. B (to be published).
  12. G. P. Agrawal, Fiber Optic Communication Systems, 4th ed. (Wiley, New York, 2002), p. 43.

2004 (1)

2003 (2)

S. Lan, S. Nishikawa, and O. Wada, Appl. Phys. Lett. 78, 2101 (2003).
[Crossref]

A. Melloni, F. Morichetti, and M. Martnelli, Opt. Quantum Electron. 35, 365 (2003).
[Crossref]

2002 (2)

M. Soljacic, S. G. Johnson, S. Fan, M. Inanescu, E. Ippen, and J. D. Joannopulos, J. Opt. Soc. Am. B 19, 2052 (2002).
[Crossref]

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Ashakawa, N. Kawai, and K. Inoue, IEEE J. Quantum Electron. 38, 837 (2002).
[Crossref]

1996 (1)

M. Scalora, R. J. Flynn, S. B. Reinhardt, and R. L. Fork, Phys. Rev. E 54, R1078 (1996).
[Crossref]

1994 (1)

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, Phys. Rev. Lett. 73, 1368 (1994).
[Crossref] [PubMed]

1987 (2)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

W. Chen and D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).
[Crossref] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Fiber Optic Communication Systems, 4th ed. (Wiley, New York, 2002), p. 43.

Ashakawa, K.

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Ashakawa, N. Kawai, and K. Inoue, IEEE J. Quantum Electron. 38, 837 (2002).
[Crossref]

Bloemer, M. J.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, Phys. Rev. Lett. 73, 1368 (1994).
[Crossref] [PubMed]

Bowden, C. M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, Phys. Rev. Lett. 73, 1368 (1994).
[Crossref] [PubMed]

Carlsson, N.

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Ashakawa, N. Kawai, and K. Inoue, IEEE J. Quantum Electron. 38, 837 (2002).
[Crossref]

Chen, W.

W. Chen and D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).
[Crossref] [PubMed]

Dowling, J. P.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, Phys. Rev. Lett. 73, 1368 (1994).
[Crossref] [PubMed]

Fan, S.

Flynn, R. J.

M. Scalora, R. J. Flynn, S. B. Reinhardt, and R. L. Fork, Phys. Rev. E 54, R1078 (1996).
[Crossref]

Folkenberg, J. R.

Fork, R. L.

M. Scalora, R. J. Flynn, S. B. Reinhardt, and R. L. Fork, Phys. Rev. E 54, R1078 (1996).
[Crossref]

Ikeda, N.

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Ashakawa, N. Kawai, and K. Inoue, IEEE J. Quantum Electron. 38, 837 (2002).
[Crossref]

Inanescu, M.

Inoue, K.

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Ashakawa, N. Kawai, and K. Inoue, IEEE J. Quantum Electron. 38, 837 (2002).
[Crossref]

Ippen, E.

Jacobsen, C.

Joannopulos, J. D.

Johnson, S. G.

Kawai, N.

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Ashakawa, N. Kawai, and K. Inoue, IEEE J. Quantum Electron. 38, 837 (2002).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, “Optical buffers based on slow light in EIT media and coupled resonator structures—comparative analysis,” J. Opt. Soc. Am. B (to be published).

Lan, S.

S. Lan, S. Nishikawa, and O. Wada, Appl. Phys. Lett. 78, 2101 (2003).
[Crossref]

Martnelli, M.

A. Melloni, F. Morichetti, and M. Martnelli, Opt. Quantum Electron. 35, 365 (2003).
[Crossref]

Melloni, A.

A. Melloni, F. Morichetti, and M. Martnelli, Opt. Quantum Electron. 35, 365 (2003).
[Crossref]

Mills, D. L.

W. Chen and D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).
[Crossref] [PubMed]

Morichetti, F.

A. Melloni, F. Morichetti, and M. Martnelli, Opt. Quantum Electron. 35, 365 (2003).
[Crossref]

Mortensen, N. A.

Nielsen, M. D.

Nishikawa, S.

S. Lan, S. Nishikawa, and O. Wada, Appl. Phys. Lett. 78, 2101 (2003).
[Crossref]

Reinhardt, S. B.

M. Scalora, R. J. Flynn, S. B. Reinhardt, and R. L. Fork, Phys. Rev. E 54, R1078 (1996).
[Crossref]

Scalora, M.

M. Scalora, R. J. Flynn, S. B. Reinhardt, and R. L. Fork, Phys. Rev. E 54, R1078 (1996).
[Crossref]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, Phys. Rev. Lett. 73, 1368 (1994).
[Crossref] [PubMed]

Simonsen, H. R.

Soljacic, M.

Sugimoto, Y.

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Ashakawa, N. Kawai, and K. Inoue, IEEE J. Quantum Electron. 38, 837 (2002).
[Crossref]

Wada, O.

S. Lan, S. Nishikawa, and O. Wada, Appl. Phys. Lett. 78, 2101 (2003).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), p. 17.

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), p. 17.

Appl. Phys. Lett. (1)

S. Lan, S. Nishikawa, and O. Wada, Appl. Phys. Lett. 78, 2101 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Ashakawa, N. Kawai, and K. Inoue, IEEE J. Quantum Electron. 38, 837 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Quantum Electron. (1)

A. Melloni, F. Morichetti, and M. Martnelli, Opt. Quantum Electron. 35, 365 (2003).
[Crossref]

Phys. Rev. E (1)

M. Scalora, R. J. Flynn, S. B. Reinhardt, and R. L. Fork, Phys. Rev. E 54, R1078 (1996).
[Crossref]

Phys. Rev. Lett. (3)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

W. Chen and D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).
[Crossref] [PubMed]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, Phys. Rev. Lett. 73, 1368 (1994).
[Crossref] [PubMed]

Other (3)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), p. 17.

J. B. Khurgin, “Optical buffers based on slow light in EIT media and coupled resonator structures—comparative analysis,” J. Opt. Soc. Am. B (to be published).

G. P. Agrawal, Fiber Optic Communication Systems, 4th ed. (Wiley, New York, 2002), p. 43.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Operating principles of two classes of nonlinear PC switches based on a, edge shift and b, SW propagation.

Fig. 2
Fig. 2

PC-imposed gain as a function of signal bandwidth for the ES and SW switches ( n H n L = 2 ) .

Fig. 3
Fig. 3

Length and input power density required for nonlinear switching for different signal bit rates ( n H n L = 2 ) .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

δ ω E ω B λ 0 2 8 π n ¯ 2 L 2 ( n H n L ) 1 2 n H n L ,
G ES = Δ n 0 Δ n non ( L 4 n ¯ λ 0 ω 0 δ ω E + 2 π W ) 1 G ES , 0 1 + 4 G ES , 0 τ T W ,
m 1 + ln [ κ 1 + ( κ 2 1 ) 1 2 ] ln ( n H n L ) .
Δ Φ non = Δ β non L = β ω Δ ω non L = π 2 κ 1 Δ n non Δ n 0 ,
β 3 = 3 β ω 3 = n ¯ m 2 π 2 c ω 0 2 1 κ 2 κ 3 .
1 2 3 β ω 3 ( π W ) 2 L < 1 2 π W , 1 4 n ¯ m 2 π 3 ν 0 3 W 3 ( 1 κ 2 ) κ 3 L λ 0 < 1 .
G SW = ( 2 ν 0 τ T ) 2 3 ln 2 3 ( n H n L ) π W τ T ln 2 3 { n H n L [ G SW + ( G SW 2 1 ) 1 2 ] } .
I in L I D L 0 = κ 2 .
ln 2 { n H n L [ 1 + 1 + ( 1 κ 2 ) 1 2 κ ] } 1 κ 2 κ 3 L L 0 ( B B cut ) 3 = 1 ,
B cut = 2 ν 0 γ ln 2 3 ( n H n L ) ( 2 Δ n max n ¯ ) 1 3 = 2 ν 0 γ ln 2 3 ( n H n L ) ( λ 0 2 n ¯ L 0 ) 1 3 .
p 3 l = b 6 ln 4 { n H n L 1 + ( 1 p l ) 1 2 ( p l ) 1 2 } ( 1 p l ) 2 ,

Metrics