Abstract

We present a broadband optical parametric amplifier design using tapered gain and tandem chirped quasi-phase-matching gratings to obtain flat gain and group-delay spectra suitable for applications such as ultrashort-pulse amplification and fiber-optic communication systems. Although a tapered-gain amplifier consisting of a single chirped grating can provide constant gain over a wide frequency range, it cannot be used to control the group delay across the spectrum. We propose controlling both the gain and the group delay profiles using a two-stage amplifier configuration, in which the idler of the first is used as the input signal of the second.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
    [CrossRef]
  2. A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, Opt. Lett. 16, 210 (1998).
    [CrossRef]
  3. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  4. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  5. M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972).
    [CrossRef]
  6. K. L. Baker, Appl. Phys. Lett. 82, 3841 (2003).
    [CrossRef]
  7. A. Bruner, D. Eger, M. B. Oron, P. Blaus, M. Katz, and S. Ruschin, Opt. Lett. 28, 194 (2003).
    [CrossRef] [PubMed]
  8. J.-P. Meyn and M. M. Fejer, Opt. Lett. 22, 1214 (1997).
    [CrossRef] [PubMed]

2003 (2)

1998 (1)

A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, Opt. Lett. 16, 210 (1998).
[CrossRef]

1997 (1)

1992 (2)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
[CrossRef]

1972 (1)

M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972).
[CrossRef]

Arbore, M. A.

A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, Opt. Lett. 16, 210 (1998).
[CrossRef]

Baker, K. L.

K. L. Baker, Appl. Phys. Lett. 82, 3841 (2003).
[CrossRef]

Blaus, P.

Bruner, A.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Dubietis, A.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
[CrossRef]

Eger, D.

Fejer, M. M.

A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, Opt. Lett. 16, 210 (1998).
[CrossRef]

J.-P. Meyn and M. M. Fejer, Opt. Lett. 22, 1214 (1997).
[CrossRef] [PubMed]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Galvanauskas, A.

A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, Opt. Lett. 16, 210 (1998).
[CrossRef]

Hariharan, A.

A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, Opt. Lett. 16, 210 (1998).
[CrossRef]

Harter, D.

A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, Opt. Lett. 16, 210 (1998).
[CrossRef]

Jonusauskas, G.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Katz, M.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Meyn, J.-P.

Oron, M. B.

Piskarskas, A.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
[CrossRef]

Rosenbluth, M. N.

M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972).
[CrossRef]

Ruschin, S.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Appl. Phys. Lett. (1)

K. L. Baker, Appl. Phys. Lett. 82, 3841 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Opt. Commun. (1)

A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972).
[CrossRef]

Other (1)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic representation of the tandem chirped QPM design, showing the tapered coupling strength. S 1 , 2 and I 1 , 2 stand for signal and idler of the first and second gratings, respectively.

Fig. 2
Fig. 2

(a) Amplification spectrum of the tandem QPM grating OPA. The total gain between 680 and 800 nm is 1.5 × 10 7 , with a root mean deviation error of 9%. Dashed curves, with tapering of the gain coefficient. Thin curves, without tapering, showing the gain ripple. (b) Group delays τ 1 , 2 of each grating.

Fig. 3
Fig. 3

(a) Maximum group-delay variation across the amplification bandwidth. (b) Phase-matching period versus position for three tandem pairs, corresponding to amplification bandwidths of 90, 175, and 270 nm , identified by labels (1), (2), and (3) in (a).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d A s d x = i γ ( x ) A i * exp [ i ϕ ( x ) ] ,
d A i * d x = i γ ( x ) A s exp [ i ϕ ( x ) ] .
G ( ω s ) = exp { 2 x tp 1 x tp 2 [ γ 2 ( κ 2 ) 2 ( x x pm ) 2 ] 1 2 d x } = exp [ 2 π γ 2 ( x pm ) κ ( x pm ) ] .
τ s ( ω s ) = L v s ( ω s )
τ i ( ω i ) = x pm ( ω s ) v s ( ω s ) + L x pm ( ω s ) v i ( ω i ) ,
ln G ( ω s ) = 2 π γ 2 ( ω s ) ( d Δ k ̃ d ω ω s ) 1 ( d x pm , 1 d ω ω s + d x pm , 2 d ω ω s ) .
τ ( ω s ) = x pm , 1 ( ω s ) + [ L 2 x pm , 2 ( ω s ) ] v s ( ω s ) + [ L 1 x pm , 1 ( ω s ) ] + x pm , 2 ( ω s ) v i ( ω s ) ,
γ ( x ) γ max = a + b × tanh ( x l 1 w 1 ) × tanh ( L x l 2 w 2 ) ,

Metrics