Abstract

A multiwavelength fiber ring laser obtained by use of a semiconductor optical amplifier (SOA) with a simple laser cavity configuration is reported. A Fabry–Perot filter was used in the fiber laser ring cavity to achieve more than 50 simultaneous wavelength lasing oscillations with a frequency separation of 50GHz. The resulting stable broadband multiwavelength lasing operation was attributed to broadband and flat gain of the SOA, which has a gain flatness of 0.8dB for more than 20nm. The laser has a total output power of 3dBm and a signal-to-spontaneous-noise ratio of 30dB.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-N. Maran, R. Slavik, S. LaRochelle, and M. Karasek, IEEE Trans. Instrum. Meas. 53, 67 (2004).
    [CrossRef]
  2. S. Yamashita, T. Baba, and Y. Namihira, IEICE Trans. Electron. 86, 59 (2003).
  3. J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photonics Technol. Lett. 16, 1026 (2004).
    [CrossRef]
  4. C.-L. Zhao, S. Yang, H. Meng, Z. Li, S. Yuan, and X. Dong, Microwave Opt. Technol. Lett. 34, 296 (2002).
    [CrossRef]
  5. Q. Mao and J. W. Y. Lit, IEEE Photonics Technol. Lett. 14, 612 (2002).
    [CrossRef]
  6. J. Chow, G. Town, and I. Bennion, IEEE Photonics Technol. Lett. 8, 60 (1996).
    [CrossRef]
  7. Y. W. Lee, J. Jung, and B. Lee, IEEE Photonics Technol. Lett. 16, 54 (2004).
    [CrossRef]
  8. J. Sun, Y. Zhang, and X. Zhang, IEEE Photonics Technol. Lett. 14, 750 (2002).
    [CrossRef]
  9. N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, IEEE Photonics Technol. Lett. 14, 693 (2002).
    [CrossRef]
  10. F. W. Tong, W. Jin, D. N. Wang, and P. K. A. Wai, Electron. Lett. 40, 594 (2004).
    [CrossRef]
  11. M. W. K. Mak, H. K. Tsang, and H. F. Liu, Electron. Lett. 36, 1580 (2000).
    [CrossRef]
  12. Q. Xu and M. Yao, IEEE J. Quantum Electron. 39, 1260 (2003).
    [CrossRef]

2004

J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photonics Technol. Lett. 16, 1026 (2004).
[CrossRef]

J.-N. Maran, R. Slavik, S. LaRochelle, and M. Karasek, IEEE Trans. Instrum. Meas. 53, 67 (2004).
[CrossRef]

Y. W. Lee, J. Jung, and B. Lee, IEEE Photonics Technol. Lett. 16, 54 (2004).
[CrossRef]

F. W. Tong, W. Jin, D. N. Wang, and P. K. A. Wai, Electron. Lett. 40, 594 (2004).
[CrossRef]

2003

Q. Xu and M. Yao, IEEE J. Quantum Electron. 39, 1260 (2003).
[CrossRef]

S. Yamashita, T. Baba, and Y. Namihira, IEICE Trans. Electron. 86, 59 (2003).

2002

J. Sun, Y. Zhang, and X. Zhang, IEEE Photonics Technol. Lett. 14, 750 (2002).
[CrossRef]

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, IEEE Photonics Technol. Lett. 14, 693 (2002).
[CrossRef]

C.-L. Zhao, S. Yang, H. Meng, Z. Li, S. Yuan, and X. Dong, Microwave Opt. Technol. Lett. 34, 296 (2002).
[CrossRef]

Q. Mao and J. W. Y. Lit, IEEE Photonics Technol. Lett. 14, 612 (2002).
[CrossRef]

2000

M. W. K. Mak, H. K. Tsang, and H. F. Liu, Electron. Lett. 36, 1580 (2000).
[CrossRef]

1996

J. Chow, G. Town, and I. Bennion, IEEE Photonics Technol. Lett. 8, 60 (1996).
[CrossRef]

Avramopoulos, H.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, IEEE Photonics Technol. Lett. 14, 693 (2002).
[CrossRef]

Baba, T.

S. Yamashita, T. Baba, and Y. Namihira, IEICE Trans. Electron. 86, 59 (2003).

Bennion, I.

J. Chow, G. Town, and I. Bennion, IEEE Photonics Technol. Lett. 8, 60 (1996).
[CrossRef]

Bintjas, C.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, IEEE Photonics Technol. Lett. 14, 693 (2002).
[CrossRef]

Chow, J.

J. Chow, G. Town, and I. Bennion, IEEE Photonics Technol. Lett. 8, 60 (1996).
[CrossRef]

Dong, X.

C.-L. Zhao, S. Yang, H. Meng, Z. Li, S. Yuan, and X. Dong, Microwave Opt. Technol. Lett. 34, 296 (2002).
[CrossRef]

Jin, W.

F. W. Tong, W. Jin, D. N. Wang, and P. K. A. Wai, Electron. Lett. 40, 594 (2004).
[CrossRef]

Jung, J.

Y. W. Lee, J. Jung, and B. Lee, IEEE Photonics Technol. Lett. 16, 54 (2004).
[CrossRef]

Kalyvas, M.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, IEEE Photonics Technol. Lett. 14, 693 (2002).
[CrossRef]

Karasek, M.

J.-N. Maran, R. Slavik, S. LaRochelle, and M. Karasek, IEEE Trans. Instrum. Meas. 53, 67 (2004).
[CrossRef]

LaRochelle, S.

J.-N. Maran, R. Slavik, S. LaRochelle, and M. Karasek, IEEE Trans. Instrum. Meas. 53, 67 (2004).
[CrossRef]

Lee, B.

Y. W. Lee, J. Jung, and B. Lee, IEEE Photonics Technol. Lett. 16, 54 (2004).
[CrossRef]

Lee, Y. W.

Y. W. Lee, J. Jung, and B. Lee, IEEE Photonics Technol. Lett. 16, 54 (2004).
[CrossRef]

Li, Z.

C.-L. Zhao, S. Yang, H. Meng, Z. Li, S. Yuan, and X. Dong, Microwave Opt. Technol. Lett. 34, 296 (2002).
[CrossRef]

Lit, J. W. Y.

Q. Mao and J. W. Y. Lit, IEEE Photonics Technol. Lett. 14, 612 (2002).
[CrossRef]

Liu, H. F.

M. W. K. Mak, H. K. Tsang, and H. F. Liu, Electron. Lett. 36, 1580 (2000).
[CrossRef]

Mak, M. W. K.

M. W. K. Mak, H. K. Tsang, and H. F. Liu, Electron. Lett. 36, 1580 (2000).
[CrossRef]

Mao, Q.

Q. Mao and J. W. Y. Lit, IEEE Photonics Technol. Lett. 14, 612 (2002).
[CrossRef]

Maran, J.-N.

J.-N. Maran, R. Slavik, S. LaRochelle, and M. Karasek, IEEE Trans. Instrum. Meas. 53, 67 (2004).
[CrossRef]

Meng, H.

C.-L. Zhao, S. Yang, H. Meng, Z. Li, S. Yuan, and X. Dong, Microwave Opt. Technol. Lett. 34, 296 (2002).
[CrossRef]

Namihira, Y.

S. Yamashita, T. Baba, and Y. Namihira, IEICE Trans. Electron. 86, 59 (2003).

Ngo, N. Q.

J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photonics Technol. Lett. 16, 1026 (2004).
[CrossRef]

Pleros, N.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, IEEE Photonics Technol. Lett. 14, 693 (2002).
[CrossRef]

Slavik, R.

J.-N. Maran, R. Slavik, S. LaRochelle, and M. Karasek, IEEE Trans. Instrum. Meas. 53, 67 (2004).
[CrossRef]

Sun, J.

J. Sun, Y. Zhang, and X. Zhang, IEEE Photonics Technol. Lett. 14, 750 (2002).
[CrossRef]

Sygletos, S.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, IEEE Photonics Technol. Lett. 14, 693 (2002).
[CrossRef]

Theophilopoulos, G.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, IEEE Photonics Technol. Lett. 14, 693 (2002).
[CrossRef]

Tjin, S. C.

J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photonics Technol. Lett. 16, 1026 (2004).
[CrossRef]

Tong, F. W.

F. W. Tong, W. Jin, D. N. Wang, and P. K. A. Wai, Electron. Lett. 40, 594 (2004).
[CrossRef]

Town, G.

J. Chow, G. Town, and I. Bennion, IEEE Photonics Technol. Lett. 8, 60 (1996).
[CrossRef]

Tsang, H. K.

M. W. K. Mak, H. K. Tsang, and H. F. Liu, Electron. Lett. 36, 1580 (2000).
[CrossRef]

Wai, P. K. A.

F. W. Tong, W. Jin, D. N. Wang, and P. K. A. Wai, Electron. Lett. 40, 594 (2004).
[CrossRef]

Wang, D. N.

F. W. Tong, W. Jin, D. N. Wang, and P. K. A. Wai, Electron. Lett. 40, 594 (2004).
[CrossRef]

Xu, Q.

Q. Xu and M. Yao, IEEE J. Quantum Electron. 39, 1260 (2003).
[CrossRef]

Yamashita, S.

S. Yamashita, T. Baba, and Y. Namihira, IEICE Trans. Electron. 86, 59 (2003).

Yang, J.

J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photonics Technol. Lett. 16, 1026 (2004).
[CrossRef]

Yang, S.

C.-L. Zhao, S. Yang, H. Meng, Z. Li, S. Yuan, and X. Dong, Microwave Opt. Technol. Lett. 34, 296 (2002).
[CrossRef]

Yao, M.

Q. Xu and M. Yao, IEEE J. Quantum Electron. 39, 1260 (2003).
[CrossRef]

Yiannopoulos, K.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, IEEE Photonics Technol. Lett. 14, 693 (2002).
[CrossRef]

Yuan, S.

C.-L. Zhao, S. Yang, H. Meng, Z. Li, S. Yuan, and X. Dong, Microwave Opt. Technol. Lett. 34, 296 (2002).
[CrossRef]

Zhang, X.

J. Sun, Y. Zhang, and X. Zhang, IEEE Photonics Technol. Lett. 14, 750 (2002).
[CrossRef]

Zhang, Y.

J. Sun, Y. Zhang, and X. Zhang, IEEE Photonics Technol. Lett. 14, 750 (2002).
[CrossRef]

Zhao, C.-L.

C.-L. Zhao, S. Yang, H. Meng, Z. Li, S. Yuan, and X. Dong, Microwave Opt. Technol. Lett. 34, 296 (2002).
[CrossRef]

Electron. Lett.

F. W. Tong, W. Jin, D. N. Wang, and P. K. A. Wai, Electron. Lett. 40, 594 (2004).
[CrossRef]

M. W. K. Mak, H. K. Tsang, and H. F. Liu, Electron. Lett. 36, 1580 (2000).
[CrossRef]

IEEE J. Quantum Electron.

Q. Xu and M. Yao, IEEE J. Quantum Electron. 39, 1260 (2003).
[CrossRef]

IEEE Photonics Technol. Lett.

J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photonics Technol. Lett. 16, 1026 (2004).
[CrossRef]

Q. Mao and J. W. Y. Lit, IEEE Photonics Technol. Lett. 14, 612 (2002).
[CrossRef]

J. Chow, G. Town, and I. Bennion, IEEE Photonics Technol. Lett. 8, 60 (1996).
[CrossRef]

Y. W. Lee, J. Jung, and B. Lee, IEEE Photonics Technol. Lett. 16, 54 (2004).
[CrossRef]

J. Sun, Y. Zhang, and X. Zhang, IEEE Photonics Technol. Lett. 14, 750 (2002).
[CrossRef]

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, IEEE Photonics Technol. Lett. 14, 693 (2002).
[CrossRef]

IEEE Trans. Instrum. Meas.

J.-N. Maran, R. Slavik, S. LaRochelle, and M. Karasek, IEEE Trans. Instrum. Meas. 53, 67 (2004).
[CrossRef]

IEICE Trans. Electron.

S. Yamashita, T. Baba, and Y. Namihira, IEICE Trans. Electron. 86, 59 (2003).

Microwave Opt. Technol. Lett.

C.-L. Zhao, S. Yang, H. Meng, Z. Li, S. Yuan, and X. Dong, Microwave Opt. Technol. Lett. 34, 296 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup for a multiwavelength semiconductor fiber ring laser with a SOA and a FPF. PC, polarization controller; C, 90 10 coupler; I1, I2, optical isolators.

Fig. 2
Fig. 2

(a) Measured loss spectrum of the FPF. (b) Four measured ASE spectra of the SOA for four different operation currents. The small-signal gain spectrum is also plotted with an input signal power of 25 dBm (squares). Res, resolution.

Fig. 3
Fig. 3

(a) MSFRL laser spectrum measured with an OSA. The SOA bias current is set at 250 mA . (b) Expanded laser spectrum of (a) showing 50-wavelength lasing simultaneous oscillations in a 3 - dB bandwidth.

Fig. 4
Fig. 4

Measured MSFRL laser spectra for different SOA bias currents I.

Fig. 5
Fig. 5

MSFRL laser spectra measured with and without a FPF. The SOA operation current is 245 mA .

Metrics