Abstract

We present optical microfluidic manipulation of silicone oil and glycerol via surface tension driven forces sustained by surface plasmon deexcitation energy. The phonon energy associated with the decaying optically excited surface plasmons in a thin gold foil creates thermal gradients capable of actuating fluid flows. Spectral dependence of the plasmon decay length and control of optical beam characteristics are shown to provide a means for further manipulation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. M. Marangoni, Ann. Phys. Chem. (Poggendorf) 143, 337 (1871).
    [CrossRef]
  2. L. E. Scriven and C. V. Sternling, Nature (London) 187, 186 (1960).
    [CrossRef]
  3. J. Thomson, Philos. Mag. Ser. 10, 330 (1855).
  4. P. Dell’Aversana and G. P. Neitzel, Phys. Today 51(1), 38 (1998).
    [CrossRef]
  5. R. Monti, R. Savino, and G. Alterio, Acta Astronaut. 51, 789 (2002).
    [CrossRef]
  6. P. Dell’Aversana, V. Tontodonato, and L. Carotenuto, Phys. Fluids 9, 2475 (1998).
    [CrossRef]
  7. M. K. Chaudhury and G. M. Whitesides, Science 256, 1539 (1992).
    [CrossRef] [PubMed]
  8. S. Daniels, M. K. Chaudhury, and J. C. Chen, Science 291, 633 (2001).
    [CrossRef]
  9. B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, Science 283, 57 (1999).
    [CrossRef] [PubMed]
  10. R. Savino, R. Monti, and G. Alterio, Phys. Fluids 13, 1513 (2001).
    [CrossRef]
  11. A. A. Darhuber, J. P. Valentino, J. M. Davis, S. M. Troian, and S. Wagner, Appl. Phys. Lett. 82, 657 (2003).
    [CrossRef]
  12. K. Ichimura, S. Oh, and M. Nakagawa, Science 288, 1624 (2000).
    [CrossRef] [PubMed]
  13. N. Garnier, R. O. Grigoriev, and M. F. Schatz, Phys. Rev. Lett. 91, 054501 (2003).
    [CrossRef]
  14. R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Appl. Phys. Lett. 85, 4237 (2004).
    [CrossRef]
  15. R. H. Ritchie, Phys. Rev. 106, 874 (1957).
    [CrossRef]
  16. T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).
  17. E. Kretschmann, Z. Phys. 241, 313 (1971).
    [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

2004

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Appl. Phys. Lett. 85, 4237 (2004).
[CrossRef]

2003

A. A. Darhuber, J. P. Valentino, J. M. Davis, S. M. Troian, and S. Wagner, Appl. Phys. Lett. 82, 657 (2003).
[CrossRef]

N. Garnier, R. O. Grigoriev, and M. F. Schatz, Phys. Rev. Lett. 91, 054501 (2003).
[CrossRef]

2002

R. Monti, R. Savino, and G. Alterio, Acta Astronaut. 51, 789 (2002).
[CrossRef]

2001

S. Daniels, M. K. Chaudhury, and J. C. Chen, Science 291, 633 (2001).
[CrossRef]

R. Savino, R. Monti, and G. Alterio, Phys. Fluids 13, 1513 (2001).
[CrossRef]

2000

K. Ichimura, S. Oh, and M. Nakagawa, Science 288, 1624 (2000).
[CrossRef] [PubMed]

1999

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, Science 283, 57 (1999).
[CrossRef] [PubMed]

1998

P. Dell’Aversana, V. Tontodonato, and L. Carotenuto, Phys. Fluids 9, 2475 (1998).
[CrossRef]

P. Dell’Aversana and G. P. Neitzel, Phys. Today 51(1), 38 (1998).
[CrossRef]

1992

M. K. Chaudhury and G. M. Whitesides, Science 256, 1539 (1992).
[CrossRef] [PubMed]

1985

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).

1971

E. Kretschmann, Z. Phys. 241, 313 (1971).
[CrossRef]

1960

L. E. Scriven and C. V. Sternling, Nature (London) 187, 186 (1960).
[CrossRef]

1957

R. H. Ritchie, Phys. Rev. 106, 874 (1957).
[CrossRef]

1871

C. G. M. Marangoni, Ann. Phys. Chem. (Poggendorf) 143, 337 (1871).
[CrossRef]

1855

J. Thomson, Philos. Mag. Ser. 10, 330 (1855).

Abbott, N. L.

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, Science 283, 57 (1999).
[CrossRef] [PubMed]

Alterio, G.

R. Monti, R. Savino, and G. Alterio, Acta Astronaut. 51, 789 (2002).
[CrossRef]

R. Savino, R. Monti, and G. Alterio, Phys. Fluids 13, 1513 (2001).
[CrossRef]

Callcott, T. A.

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).

Carotenuto, L.

P. Dell’Aversana, V. Tontodonato, and L. Carotenuto, Phys. Fluids 9, 2475 (1998).
[CrossRef]

Chaudhury, M. K.

S. Daniels, M. K. Chaudhury, and J. C. Chen, Science 291, 633 (2001).
[CrossRef]

M. K. Chaudhury and G. M. Whitesides, Science 256, 1539 (1992).
[CrossRef] [PubMed]

Chen, J. C.

S. Daniels, M. K. Chaudhury, and J. C. Chen, Science 291, 633 (2001).
[CrossRef]

Craig, V. S.

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, Science 283, 57 (1999).
[CrossRef] [PubMed]

Daniels, S.

S. Daniels, M. K. Chaudhury, and J. C. Chen, Science 291, 633 (2001).
[CrossRef]

Darhuber, A. A.

A. A. Darhuber, J. P. Valentino, J. M. Davis, S. M. Troian, and S. Wagner, Appl. Phys. Lett. 82, 657 (2003).
[CrossRef]

Davis, J. M.

A. A. Darhuber, J. P. Valentino, J. M. Davis, S. M. Troian, and S. Wagner, Appl. Phys. Lett. 82, 657 (2003).
[CrossRef]

Dell’Aversana, P.

P. Dell’Aversana, V. Tontodonato, and L. Carotenuto, Phys. Fluids 9, 2475 (1998).
[CrossRef]

P. Dell’Aversana and G. P. Neitzel, Phys. Today 51(1), 38 (1998).
[CrossRef]

Eagerton, F. D.

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, Science 283, 57 (1999).
[CrossRef] [PubMed]

Farahi, R. H.

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Appl. Phys. Lett. 85, 4237 (2004).
[CrossRef]

Ferrell, T. L.

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Appl. Phys. Lett. 85, 4237 (2004).
[CrossRef]

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).

Gallardo, B. S.

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, Science 283, 57 (1999).
[CrossRef] [PubMed]

Garnier, N.

N. Garnier, R. O. Grigoriev, and M. F. Schatz, Phys. Rev. Lett. 91, 054501 (2003).
[CrossRef]

Grigoriev, R. O.

N. Garnier, R. O. Grigoriev, and M. F. Schatz, Phys. Rev. Lett. 91, 054501 (2003).
[CrossRef]

Gupta, V. K.

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, Science 283, 57 (1999).
[CrossRef] [PubMed]

Ichimura, K.

K. Ichimura, S. Oh, and M. Nakagawa, Science 288, 1624 (2000).
[CrossRef] [PubMed]

Jong, L. I.

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, Science 283, 57 (1999).
[CrossRef] [PubMed]

Kretschmann, E.

E. Kretschmann, Z. Phys. 241, 313 (1971).
[CrossRef]

Marangoni, C. G. M.

C. G. M. Marangoni, Ann. Phys. Chem. (Poggendorf) 143, 337 (1871).
[CrossRef]

Monti, R.

R. Monti, R. Savino, and G. Alterio, Acta Astronaut. 51, 789 (2002).
[CrossRef]

R. Savino, R. Monti, and G. Alterio, Phys. Fluids 13, 1513 (2001).
[CrossRef]

Nakagawa, M.

K. Ichimura, S. Oh, and M. Nakagawa, Science 288, 1624 (2000).
[CrossRef] [PubMed]

Neitzel, G. P.

P. Dell’Aversana and G. P. Neitzel, Phys. Today 51(1), 38 (1998).
[CrossRef]

Oh, S.

K. Ichimura, S. Oh, and M. Nakagawa, Science 288, 1624 (2000).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

Passian, A.

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Appl. Phys. Lett. 85, 4237 (2004).
[CrossRef]

Ritchie, R. H.

R. H. Ritchie, Phys. Rev. 106, 874 (1957).
[CrossRef]

Savino, R.

R. Monti, R. Savino, and G. Alterio, Acta Astronaut. 51, 789 (2002).
[CrossRef]

R. Savino, R. Monti, and G. Alterio, Phys. Fluids 13, 1513 (2001).
[CrossRef]

Schatz, M. F.

N. Garnier, R. O. Grigoriev, and M. F. Schatz, Phys. Rev. Lett. 91, 054501 (2003).
[CrossRef]

Scriven, L. E.

L. E. Scriven and C. V. Sternling, Nature (London) 187, 186 (1960).
[CrossRef]

Shah, R. R.

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, Science 283, 57 (1999).
[CrossRef] [PubMed]

Sternling, C. V.

L. E. Scriven and C. V. Sternling, Nature (London) 187, 186 (1960).
[CrossRef]

Thomson, J.

J. Thomson, Philos. Mag. Ser. 10, 330 (1855).

Thundat, T.

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Appl. Phys. Lett. 85, 4237 (2004).
[CrossRef]

Tontodonato, V.

P. Dell’Aversana, V. Tontodonato, and L. Carotenuto, Phys. Fluids 9, 2475 (1998).
[CrossRef]

Troian, S. M.

A. A. Darhuber, J. P. Valentino, J. M. Davis, S. M. Troian, and S. Wagner, Appl. Phys. Lett. 82, 657 (2003).
[CrossRef]

Valentino, J. P.

A. A. Darhuber, J. P. Valentino, J. M. Davis, S. M. Troian, and S. Wagner, Appl. Phys. Lett. 82, 657 (2003).
[CrossRef]

Wagner, S.

A. A. Darhuber, J. P. Valentino, J. M. Davis, S. M. Troian, and S. Wagner, Appl. Phys. Lett. 82, 657 (2003).
[CrossRef]

Warmack, R. J.

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).

Whitesides, G. M.

M. K. Chaudhury and G. M. Whitesides, Science 256, 1539 (1992).
[CrossRef] [PubMed]

Acta Astronaut.

R. Monti, R. Savino, and G. Alterio, Acta Astronaut. 51, 789 (2002).
[CrossRef]

Am. Sci.

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).

Ann. Phys. Chem. (Poggendorf)

C. G. M. Marangoni, Ann. Phys. Chem. (Poggendorf) 143, 337 (1871).
[CrossRef]

Appl. Phys. Lett.

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, Appl. Phys. Lett. 85, 4237 (2004).
[CrossRef]

A. A. Darhuber, J. P. Valentino, J. M. Davis, S. M. Troian, and S. Wagner, Appl. Phys. Lett. 82, 657 (2003).
[CrossRef]

Nature (London)

L. E. Scriven and C. V. Sternling, Nature (London) 187, 186 (1960).
[CrossRef]

Philos. Mag. Ser.

J. Thomson, Philos. Mag. Ser. 10, 330 (1855).

Phys. Fluids

P. Dell’Aversana, V. Tontodonato, and L. Carotenuto, Phys. Fluids 9, 2475 (1998).
[CrossRef]

R. Savino, R. Monti, and G. Alterio, Phys. Fluids 13, 1513 (2001).
[CrossRef]

Phys. Rev.

R. H. Ritchie, Phys. Rev. 106, 874 (1957).
[CrossRef]

Phys. Rev. Lett.

N. Garnier, R. O. Grigoriev, and M. F. Schatz, Phys. Rev. Lett. 91, 054501 (2003).
[CrossRef]

Phys. Today

P. Dell’Aversana and G. P. Neitzel, Phys. Today 51(1), 38 (1998).
[CrossRef]

Science

M. K. Chaudhury and G. M. Whitesides, Science 256, 1539 (1992).
[CrossRef] [PubMed]

S. Daniels, M. K. Chaudhury, and J. C. Chen, Science 291, 633 (2001).
[CrossRef]

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, Science 283, 57 (1999).
[CrossRef] [PubMed]

K. Ichimura, S. Oh, and M. Nakagawa, Science 288, 1624 (2000).
[CrossRef] [PubMed]

Z. Phys.

E. Kretschmann, Z. Phys. 241, 313 (1971).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the Kretschmann configuration including the droplets. A right-angle quartz ( n = 1.46 ) prism, is Au coated by vacuum evaporation to form a 34 - nm thin film. Several droplets (index of refraction n i , surface tension σ i , viscosity ν i , i = 1 , 2 , ) are disposed on the surface of the Au, where a temperature gradient prevails because of the decay of surface plasmons. Photons of wavelength λ excites the plasmons at an angle θ sp determined for the free Au surface. The contact angles of the droplets were measured to estimate their curvature.

Fig. 2
Fig. 2

Demonstration of surface tension driven manipulation by surface plasmons of (a)–(e) a silicone droplet and (f)–(l) a glycerol droplet. The silicone droplet contact angle is θ c = 10 ° , whereas that of the glycerol is 50°. The scale bar in (a) represents the dimensions in all the displayed images. The incident beam, generating the excitation region (bright spot) seen above the droplet in (a) facilitates the droplet actuation. The beam is blocked in (c), (j), and (l) to better show the resulting state of the liquid droplets. For viewing purposes the silicone droplet was illuminated from the bottom and the glycerol droplet was illuminated from the top. The topside illumination highlighted the surface roughness of the Au film. The droplets are distorted in shape because of the geometric asymmetries in the thermal gradient.

Fig. 3
Fig. 3

Relative modification of the surface plasmon excitation as a result of the variation of the dielectric function of the liquid in the Kretschmann configuration. The simulation was made for (a) 34 nm thick Au film at the λ = 514 nm line of an Ar + laser and (b) 54 nm thick Au film at the λ = 632.8 nm line of a He–Ne laser for both p and s polarizations. As can be seen, apart from an angular shift, the resonance conditions deteriorate drastically for the chosen film for n as low as 1.4.

Metrics