Abstract

A powerful method for the production of reproducible surface-enhanced Raman scattering (SERS) substrates is described based on the scaling properties of glass rods when drawn into fibers. The fabrication process involves chemically eroding the cleaved tips of drawn silica imaging fibers and then coating them with silver. For an appropriate choice of final diameter the drawn and eroded tips show clearly defined and regular triangular formations on a scale of approximately 80nm. The favorable SERS properties of these structures have been demonstrated by the observation of enhancement factors of approximately 106.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering

Xuan Yang, Nazar Ileri, Cindy C. Larson, Thomas C. Carlson, Jerald A. Britten, Allan S. P. Chang, Claire Gu, and Tiziana C. Bond
Opt. Express 20(22) 24819-24826 (2012)

A high sensitive fiber SERS probe based on silver nanorod arrays

HsiaoYun Chu, Yongjun Liu, Yaowen Huang, and Yiping Zhao
Opt. Express 15(19) 12230-12239 (2007)

Remote surface enhanced Raman spectroscopy imaging via a nanostructured optical fiber bundle

Valérie Guieu, Patrick Garrigue, François Lagugné-Labarthet, Laurent Servant, Neso Sojic, and David Talaga
Opt. Express 17(26) 24030-24035 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription