Abstract

Using spectral analysis, we present the salient features of the radiating behavior of optical solitons in dispersion-managed fiber systems. Depending on the map strength of the system, we find a rich variety of dynamic states that includes weak, moderate, and strong radiation states. We establish the existence of a critical map strength at which a Gaussian-shaped light pulse with a large initial dressing undergoes highly stable nonradiative propagation over transoceanic distances.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. E. Zakharov and S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer-Verlag, Berlin, 1998).
  2. T. I. Lakoba and D. E. Pelinovsky, Chaos 10, 539 (2000).
    [CrossRef]
  3. T. S. Yang and W. L. Kath, Physica D 149, 80 (2001).
    [CrossRef]
  4. Y. Chung, V. V. Lebedev, and S. S. Vergeles, Opt. Lett. 29, 1245 (2004).
    [CrossRef] [PubMed]
  5. D. E. Pelinovsky and J. Yang, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 64, 1360 (2004).
    [CrossRef]
  6. A. H. Liang, H. Toda, and A. Hasegawa, Opt. Lett. 24, 799 (1999).
    [CrossRef]
  7. K. Nakkeeran, Y. H. C. Kwan, P. K. A. Wai, A. Labruyère, P. Tchofo Dinda, and A. B. Moubissi, J. Opt. Soc. Am. B 21, 1901 (2004).
    [CrossRef]
  8. P. Tchofo Dinda, A. B. Moubissi, and K. Nakkeeran, Phys. Rev. E 63, 016608 (2001).
    [CrossRef]

2004 (3)

2001 (2)

P. Tchofo Dinda, A. B. Moubissi, and K. Nakkeeran, Phys. Rev. E 63, 016608 (2001).
[CrossRef]

T. S. Yang and W. L. Kath, Physica D 149, 80 (2001).
[CrossRef]

2000 (1)

T. I. Lakoba and D. E. Pelinovsky, Chaos 10, 539 (2000).
[CrossRef]

1999 (1)

Chung, Y.

Hasegawa, A.

Kath, W. L.

T. S. Yang and W. L. Kath, Physica D 149, 80 (2001).
[CrossRef]

Kwan, Y. H. C.

Labruyère, A.

Lakoba, T. I.

T. I. Lakoba and D. E. Pelinovsky, Chaos 10, 539 (2000).
[CrossRef]

Lebedev, V. V.

Liang, A. H.

Moubissi, A. B.

Nakkeeran, K.

Pelinovsky, D. E.

D. E. Pelinovsky and J. Yang, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 64, 1360 (2004).
[CrossRef]

T. I. Lakoba and D. E. Pelinovsky, Chaos 10, 539 (2000).
[CrossRef]

Tchofo Dinda, P.

Toda, H.

Vergeles, S. S.

Wabnitz, S.

V. E. Zakharov and S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer-Verlag, Berlin, 1998).

Wai, P. K. A.

Yang, J.

D. E. Pelinovsky and J. Yang, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 64, 1360 (2004).
[CrossRef]

Yang, T. S.

T. S. Yang and W. L. Kath, Physica D 149, 80 (2001).
[CrossRef]

Zakharov, V. E.

V. E. Zakharov and S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer-Verlag, Berlin, 1998).

Chaos (1)

T. I. Lakoba and D. E. Pelinovsky, Chaos 10, 539 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Phys. Rev. E (1)

P. Tchofo Dinda, A. B. Moubissi, and K. Nakkeeran, Phys. Rev. E 63, 016608 (2001).
[CrossRef]

Physica D (1)

T. S. Yang and W. L. Kath, Physica D 149, 80 (2001).
[CrossRef]

SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. (1)

D. E. Pelinovsky and J. Yang, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 64, 1360 (2004).
[CrossRef]

Other (1)

V. E. Zakharov and S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer-Verlag, Berlin, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Temporal profiles of the stationary pulse. (b1) and (b2) Temporal and spectral profiles of the initial dressing, respectively. (c) Energy radiated over 6 Mm , initial dressing energy, and average dispersion (dashed curve) versus map strength.

Fig. 2
Fig. 2

Evolution of the spectral and temporal profiles of the pulse dressing as a function of propagation distance.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ψ z + i [ β ( z ) 2 ] ψ t t i γ ψ 2 ψ ( α 2 ) ψ + A ( ψ ) = 0 ,
Q 0 ( t ) = ψ st ψ g ,
ψ g = f x 1 exp ( ξ 2 x 3 2 + i x 4 ξ 2 2 + i x 5 ξ + i x 6 ) ,
E 0 Q 0 2 d t = ψ st f 2 d t .

Metrics