Abstract

Single-scattering spectroscopy by use of a low-coherence interferometer is introduced to measure the power spectra of light scattered from extremely dense colloidal suspensions. The power spectrum of a heterodyne component can be obtained by subtraction of the power spectrum of a homodyne component from the measured power spectrum. The heterodyne power spectrum for light scattered from the medium is shown to coincide with the single-scattering spectrum to a depth of up to a few times the mean-free path length. Therefore single-scattering spectroscopy is newly proposed as a means by which to analyze the characteristics of extremely dense colloidal suspensions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Berne and R. Pecora, Dynamic Light Scattering (Dover, New York, 2000).
  2. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, Phys. Rev. Lett. 60, 1134 (1988).
    [CrossRef] [PubMed]
  3. G. D. J. Phillies, Phys. Rev. A 24, 1939 (1981).
    [CrossRef]
  4. P. N. Segre, W. Van Megen, P. N. Pusey, K. Schatzel, and W. Peters, J. Mod. Opt. 42, 1929 (1995).
    [CrossRef]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
    [CrossRef] [PubMed]
  6. X. J. Wang, T. E. Milner, and J. S. Nelson, Opt. Lett. 20, 1337 (1995).
    [CrossRef] [PubMed]
  7. D. A. Baos, K. K. Bizheva, and A. M. Siegel, Opt. Lett. 23, 319 (1998).
    [CrossRef]
  8. A. L. Petoukhova, W. Steenbergen, and F. F. M. de Mul, Opt. Lett. 26, 1492 (2001).
    [CrossRef]
  9. K. Ishii and T. Iwai, Proc. SPIE 4829, 895 (2002).

2002 (1)

K. Ishii and T. Iwai, Proc. SPIE 4829, 895 (2002).

2001 (1)

1998 (1)

1995 (2)

X. J. Wang, T. E. Milner, and J. S. Nelson, Opt. Lett. 20, 1337 (1995).
[CrossRef] [PubMed]

P. N. Segre, W. Van Megen, P. N. Pusey, K. Schatzel, and W. Peters, J. Mod. Opt. 42, 1929 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

1988 (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, Phys. Rev. Lett. 60, 1134 (1988).
[CrossRef] [PubMed]

1981 (1)

G. D. J. Phillies, Phys. Rev. A 24, 1939 (1981).
[CrossRef]

Baos, D. A.

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering (Dover, New York, 2000).

Bizheva, K. K.

Chaikin, P. M.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, Phys. Rev. Lett. 60, 1134 (1988).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

de Mul, F. F. M.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, Phys. Rev. Lett. 60, 1134 (1988).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Ishii, K.

K. Ishii and T. Iwai, Proc. SPIE 4829, 895 (2002).

Iwai, T.

K. Ishii and T. Iwai, Proc. SPIE 4829, 895 (2002).

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Milner, T. E.

Nelson, J. S.

Pecora, R.

B. J. Berne and R. Pecora, Dynamic Light Scattering (Dover, New York, 2000).

Peters, W.

P. N. Segre, W. Van Megen, P. N. Pusey, K. Schatzel, and W. Peters, J. Mod. Opt. 42, 1929 (1995).
[CrossRef]

Petoukhova, A. L.

Phillies, G. D. J.

G. D. J. Phillies, Phys. Rev. A 24, 1939 (1981).
[CrossRef]

Pine, D. J.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, Phys. Rev. Lett. 60, 1134 (1988).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Pusey, P. N.

P. N. Segre, W. Van Megen, P. N. Pusey, K. Schatzel, and W. Peters, J. Mod. Opt. 42, 1929 (1995).
[CrossRef]

Schatzel, K.

P. N. Segre, W. Van Megen, P. N. Pusey, K. Schatzel, and W. Peters, J. Mod. Opt. 42, 1929 (1995).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Segre, P. N.

P. N. Segre, W. Van Megen, P. N. Pusey, K. Schatzel, and W. Peters, J. Mod. Opt. 42, 1929 (1995).
[CrossRef]

Siegel, A. M.

Steenbergen, W.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Van Megen, W.

P. N. Segre, W. Van Megen, P. N. Pusey, K. Schatzel, and W. Peters, J. Mod. Opt. 42, 1929 (1995).
[CrossRef]

Wang, X. J.

Weitz, D. A.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, Phys. Rev. Lett. 60, 1134 (1988).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

P. N. Segre, W. Van Megen, P. N. Pusey, K. Schatzel, and W. Peters, J. Mod. Opt. 42, 1929 (1995).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

G. D. J. Phillies, Phys. Rev. A 24, 1939 (1981).
[CrossRef]

Phys. Rev. Lett. (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, Phys. Rev. Lett. 60, 1134 (1988).
[CrossRef] [PubMed]

Proc. SPIE (1)

K. Ishii and T. Iwai, Proc. SPIE 4829, 895 (2002).

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Other (1)

B. J. Berne and R. Pecora, Dynamic Light Scattering (Dover, New York, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of single-scattering spectroscopy with a low-coherence interferometer: PZT, piezoelectric transducer; NA, numerical aperture; BS, beam splitter; PD, photodetector.

Fig. 2
Fig. 2

Power spectra measured with a low-coherence interferometer. The solid and dashed curves represent the spectra measured when the differences between the path lengths of the scattered and reference lights are -50 and 0 µm, respectively. The 10-vol. % polystyrene latex suspension with a particle diameter of 450 nm is used as the scattering medium.

Fig. 3
Fig. 3

Power spectra of the homodyne and heterodyne components. The homodyne component is measured when the difference between path lengths of the scattered and reference lights is -50 µm. The heterodyne component is obtained by subtracting the homodyne component from the power spectrum measured when the difference between the path lengths of the scattered and reference lights is 0 µm. The solid curve represents the theoretical power spectrum predicted by use of dynamic light scattering.

Fig. 4
Fig. 4

Power spectra of the heterodyne component measured for 10-vol. % polystyrene latex suspensions with diameters of 450, 1090, and 3040 nm. The solid curves represent the theoretical power spectra calculated with the single-scattering theory.

Fig. 5
Fig. 5

Dependence of the FWHM of the heterodyne component on the path length for polystyrene latex suspensions with diameters of 450, 1090, and 3040 nm. The solid lines represent the theoretical FWHM calculated with the single-scattering theory.

Fig. 6
Fig. 6

Dependence of the modulus of the heterodyne component on the path length for polystyrene latex suspensions with diameters of 450, 1090, and 3040 nm. The solid line represents the theoretical normalized intensity calculated by use of the single-scattering theory.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Pf=Dq22πf2+Dq22

Metrics