Abstract

A new technique for achieving efficient Čerenkov-type second-harmonic generation (SHG) in a nonlinear-optical (NLO) polymer waveguide is presented. The configuration, which can prevent the losses of light caused by relatively long-distance propagation and the multiple reflections that appear in the conventional Čerenkov technique, exhibits ease of fabrication and compactness. We experimentally observed a conversion efficiency of 1.6% W-1 cm-1, which to our knowledge is the highest value reported for Čerenkov SHG in polymer, by tuning both the thickness and the refractive index of the polymer film close to phase matching between a guided fundamental wave and a guided harmonic wave. The experimental results agreed well with the theoretical prediction.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription