Abstract

We demonstrate optical waveguiding of a probe beam at 980 nm by a soliton beam at 780 nm in an organic photorefractive monolithic glass. Both planar and circular waveguides induced by one- and two-dimensional spatial solitons formed as a result of orientationally enhanced photorefractive nonlinearity are produced in the organic glass. Possibilities for increasing the speed of waveguide formation are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-trapping of light in an organic photorefractive glass

Zhigang Chen, Marcus Asaro, Oksana Ostroverkhova, W. E. Moerner, Meng He, and R. J. Twieg
Opt. Lett. 28(24) 2509-2511 (2003)

Steady-state vortex-screening solitons formed in biased photorefractive media

Zhigang Chen, Ming-feng Shih, Mordechai Segev, Daniel W. Wilson, Richard E. Muller, and Paul D. Maker
Opt. Lett. 22(23) 1751-1753 (1997)

Formation of discrete solitons in light-induced photonic lattices

Zhigang Chen, Hector Martin, Eugenia D. Eugenieva, Jingjun Xu, and Jianke Yang
Opt. Express 13(6) 1816-1826 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription