Abstract

We demonstrate optical waveguiding of a probe beam at 980 nm by a soliton beam at 780 nm in an organic photorefractive monolithic glass. Both planar and circular waveguides induced by one- and two-dimensional spatial solitons formed as a result of orientationally enhanced photorefractive nonlinearity are produced in the organic glass. Possibilities for increasing the speed of waveguide formation are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
    [CrossRef] [PubMed]
  2. M. Morin, G. Duree, G. Salamo, and M. Segev, Opt. Lett. 20, 2066 (1995).
    [CrossRef] [PubMed]
  3. M. Shih, Z. Chen, M. Mitchell, and M. Segev, J. Opt. Soc. Am. B 14, 3091 (1997).
    [CrossRef]
  4. S. Lan, E. DelRe, Z. Chen, M. Shih, and M. Segev, Opt. Lett. 24, 475 (1999).
    [CrossRef]
  5. O. Ostroverkhova, D. Wright, U. Gubler, W. E. Moerner, M. He, A. Sastre-Santos, and R. J. Twieg, Adv. Funct. Mater. 12, 621 (2002).
    [CrossRef]
  6. O. Ostroverkhova, M. He, R. Twieg, and W. E. Moerner, Chem. Phys. Chem. 4, 732 (2003).
  7. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, J. Opt. Soc. Am. B 11, 320 (1994).
    [CrossRef]
  8. M. Shih and F. Sheu, Opt. Lett. 24, 1853 (1999).
    [CrossRef]
  9. Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, Opt. Lett. 28, 2509 (2003).
    [CrossRef] [PubMed]
  10. J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, Opt. Lett. 15, 471 (1990).
    [CrossRef] [PubMed]
  11. U. Barhuzh, U. Peschel, Th. Gabler, R. Waldhiiusl, and H. H. Horhold, Opt. Commun. 134, 49 (1997).
    [CrossRef]
  12. E. DelRe, M. Tamburrini, and A. J. Agranat, Opt. Lett. 25, 963 (2000).
    [CrossRef]
  13. E. DelRe, A. Ciattoni, and A. J. Agranat, Opt. Lett. 26, 908 (2001).
    [CrossRef]
  14. E. DelRe, B. Crosignani, P. Porto, E. Palange, and A. J. Agranat, Opt. Lett. 27, 2188 (2002).
    [CrossRef]

2003 (2)

O. Ostroverkhova, M. He, R. Twieg, and W. E. Moerner, Chem. Phys. Chem. 4, 732 (2003).

Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, Opt. Lett. 28, 2509 (2003).
[CrossRef] [PubMed]

2002 (2)

E. DelRe, B. Crosignani, P. Porto, E. Palange, and A. J. Agranat, Opt. Lett. 27, 2188 (2002).
[CrossRef]

O. Ostroverkhova, D. Wright, U. Gubler, W. E. Moerner, M. He, A. Sastre-Santos, and R. J. Twieg, Adv. Funct. Mater. 12, 621 (2002).
[CrossRef]

2001 (1)

2000 (1)

1999 (3)

1997 (2)

M. Shih, Z. Chen, M. Mitchell, and M. Segev, J. Opt. Soc. Am. B 14, 3091 (1997).
[CrossRef]

U. Barhuzh, U. Peschel, Th. Gabler, R. Waldhiiusl, and H. H. Horhold, Opt. Commun. 134, 49 (1997).
[CrossRef]

1995 (1)

1994 (1)

1990 (1)

Agranat, A. J.

Aitchison, J. S.

Asaro, M.

Barhuzh, U.

U. Barhuzh, U. Peschel, Th. Gabler, R. Waldhiiusl, and H. H. Horhold, Opt. Commun. 134, 49 (1997).
[CrossRef]

Bjorklund, G. C.

Chen, Z.

Ciattoni, A.

Crosignani, B.

DelRe, E.

Duree, G.

Gabler, Th.

U. Barhuzh, U. Peschel, Th. Gabler, R. Waldhiiusl, and H. H. Horhold, Opt. Commun. 134, 49 (1997).
[CrossRef]

Gubler, U.

O. Ostroverkhova, D. Wright, U. Gubler, W. E. Moerner, M. He, A. Sastre-Santos, and R. J. Twieg, Adv. Funct. Mater. 12, 621 (2002).
[CrossRef]

Hache, F.

He, M.

O. Ostroverkhova, M. He, R. Twieg, and W. E. Moerner, Chem. Phys. Chem. 4, 732 (2003).

Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, Opt. Lett. 28, 2509 (2003).
[CrossRef] [PubMed]

O. Ostroverkhova, D. Wright, U. Gubler, W. E. Moerner, M. He, A. Sastre-Santos, and R. J. Twieg, Adv. Funct. Mater. 12, 621 (2002).
[CrossRef]

Horhold, H. H.

U. Barhuzh, U. Peschel, Th. Gabler, R. Waldhiiusl, and H. H. Horhold, Opt. Commun. 134, 49 (1997).
[CrossRef]

Jackel, J. L.

Lan, S.

Leaird, D. E.

Mitchell, M.

Moerner, W. E.

O. Ostroverkhova, M. He, R. Twieg, and W. E. Moerner, Chem. Phys. Chem. 4, 732 (2003).

Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, Opt. Lett. 28, 2509 (2003).
[CrossRef] [PubMed]

O. Ostroverkhova, D. Wright, U. Gubler, W. E. Moerner, M. He, A. Sastre-Santos, and R. J. Twieg, Adv. Funct. Mater. 12, 621 (2002).
[CrossRef]

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, J. Opt. Soc. Am. B 11, 320 (1994).
[CrossRef]

Morin, M.

Oliver, M. K.

Ostroverkhova, O.

O. Ostroverkhova, M. He, R. Twieg, and W. E. Moerner, Chem. Phys. Chem. 4, 732 (2003).

Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, Opt. Lett. 28, 2509 (2003).
[CrossRef] [PubMed]

O. Ostroverkhova, D. Wright, U. Gubler, W. E. Moerner, M. He, A. Sastre-Santos, and R. J. Twieg, Adv. Funct. Mater. 12, 621 (2002).
[CrossRef]

Palange, E.

Peschel, U.

U. Barhuzh, U. Peschel, Th. Gabler, R. Waldhiiusl, and H. H. Horhold, Opt. Commun. 134, 49 (1997).
[CrossRef]

Porto, P.

Salamo, G.

Sastre-Santos, A.

O. Ostroverkhova, D. Wright, U. Gubler, W. E. Moerner, M. He, A. Sastre-Santos, and R. J. Twieg, Adv. Funct. Mater. 12, 621 (2002).
[CrossRef]

Segev, M.

Sheu, F.

Shih, M.

Silberberg, Y.

Silence, S. M.

Smith, P. W. E.

Stegeman, G. I.

G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
[CrossRef] [PubMed]

Tamburrini, M.

Twieg, R.

O. Ostroverkhova, M. He, R. Twieg, and W. E. Moerner, Chem. Phys. Chem. 4, 732 (2003).

Twieg, R. J.

Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, Opt. Lett. 28, 2509 (2003).
[CrossRef] [PubMed]

O. Ostroverkhova, D. Wright, U. Gubler, W. E. Moerner, M. He, A. Sastre-Santos, and R. J. Twieg, Adv. Funct. Mater. 12, 621 (2002).
[CrossRef]

Vogel, E. M.

Waldhiiusl, R.

U. Barhuzh, U. Peschel, Th. Gabler, R. Waldhiiusl, and H. H. Horhold, Opt. Commun. 134, 49 (1997).
[CrossRef]

Weiner, A. M.

Wright, D.

O. Ostroverkhova, D. Wright, U. Gubler, W. E. Moerner, M. He, A. Sastre-Santos, and R. J. Twieg, Adv. Funct. Mater. 12, 621 (2002).
[CrossRef]

Adv. Funct. Mater. (1)

O. Ostroverkhova, D. Wright, U. Gubler, W. E. Moerner, M. He, A. Sastre-Santos, and R. J. Twieg, Adv. Funct. Mater. 12, 621 (2002).
[CrossRef]

Chem. Phys. Chem. (1)

O. Ostroverkhova, M. He, R. Twieg, and W. E. Moerner, Chem. Phys. Chem. 4, 732 (2003).

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

U. Barhuzh, U. Peschel, Th. Gabler, R. Waldhiiusl, and H. H. Horhold, Opt. Commun. 134, 49 (1997).
[CrossRef]

Opt. Lett. (8)

Science (1)

G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic drawing of the experimental setup.

Fig. 2
Fig. 2

Planar waveguides induced by 1D solitons. Shown are intensity patterns and beam profiles taken at (a) input, (b) linear output, (c) nonlinear output, and (d) output of (c) at turn-off of the field. Top, 780-nm soliton beam; bottom, 980-nm probe beam.

Fig. 3
Fig. 3

Circular waveguides induced by 2D solitons. The description of (a)–(c) is similar to that for Fig. 2.

Fig. 4
Fig. 4

Normalized peak intensity versus time for samples with various weight percent values of C60 at an applied field of 13 V/µm.

Metrics