Abstract

It is shown theoretically that canceling third-order dispersion can substantially increase the useful bandwidths of linear and nonlinear optical devices based on slow propagation of light. Cancellation on both global and local scales can be achieved by combination of the ring-based coupled resonator lines and all-pass optical filters.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. M. Litchinitser, B. J. Eggleton, and G. P. Agrawal, J. Lightwave Technol. 16, 1523 (1999).
    [CrossRef]
  2. J. B. Khurgin, Phys. Rev. A 62, 3821 (2000).
    [CrossRef]
  3. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett. 24, 711 (1999).
    [CrossRef]
  4. A. Melloni, F. Morichetti, and M. Martnelli, Opt. Quantum Electron. 35, 365 (2003).
    [CrossRef]
  5. J. E. Heebner and R. W. Boyd, J. Mod. Opt. 49, 2629 (2002).
    [CrossRef]
  6. J. E. Heebner, R. W. Boyd, and Q.-H. Park, J. Opt. Soc. Am. B 19, 722 (2002).
    [CrossRef]
  7. Z. Wang and S. Fan, Phys. Rev. E 68, 066616 (2003).
    [CrossRef]
  8. Y. Tao, Y. Sugimoto, S. Lan, N. Ikeda, Y. Tanaka, and Y. K. Asakawa, J. Opt. Soc. Am. B 20, 1992 (2003).
  9. S. Nishikawa, S. Lan, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, Opt. Lett. 27, 2079 (2002).
    [CrossRef]
  10. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
    [CrossRef]
  11. J. B. Khurgin, “Optical buffers based on slow light in EIT media and coupled resonator structure—a comparative analysis,” J. Opt. Soc. Am. B (to be published).
  12. G. P. Agrawal, Fiber Optic Communication Systems, 4th ed. (Wiley, New York, 2002), p. 43.

2003 (3)

Z. Wang and S. Fan, Phys. Rev. E 68, 066616 (2003).
[CrossRef]

Y. Tao, Y. Sugimoto, S. Lan, N. Ikeda, Y. Tanaka, and Y. K. Asakawa, J. Opt. Soc. Am. B 20, 1992 (2003).

A. Melloni, F. Morichetti, and M. Martnelli, Opt. Quantum Electron. 35, 365 (2003).
[CrossRef]

2002 (3)

2001 (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

2000 (1)

J. B. Khurgin, Phys. Rev. A 62, 3821 (2000).
[CrossRef]

1999 (2)

Agrawal, G. P.

N. M. Litchinitser, B. J. Eggleton, and G. P. Agrawal, J. Lightwave Technol. 16, 1523 (1999).
[CrossRef]

G. P. Agrawal, Fiber Optic Communication Systems, 4th ed. (Wiley, New York, 2002), p. 43.

Asakawa, K.

Asakawa, Y. K.

Y. Tao, Y. Sugimoto, S. Lan, N. Ikeda, Y. Tanaka, and Y. K. Asakawa, J. Opt. Soc. Am. B 20, 1992 (2003).

Boyd, R. W.

Eggleton, B. J.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

N. M. Litchinitser, B. J. Eggleton, and G. P. Agrawal, J. Lightwave Technol. 16, 1523 (1999).
[CrossRef]

Fan, S.

Z. Wang and S. Fan, Phys. Rev. E 68, 066616 (2003).
[CrossRef]

Heebner, J. E.

Ikeda, N.

Y. Tao, Y. Sugimoto, S. Lan, N. Ikeda, Y. Tanaka, and Y. K. Asakawa, J. Opt. Soc. Am. B 20, 1992 (2003).

S. Nishikawa, S. Lan, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, Opt. Lett. 27, 2079 (2002).
[CrossRef]

Ishikawa, H.

Khurgin, J. B.

J. B. Khurgin, Phys. Rev. A 62, 3821 (2000).
[CrossRef]

J. B. Khurgin, “Optical buffers based on slow light in EIT media and coupled resonator structure—a comparative analysis,” J. Opt. Soc. Am. B (to be published).

Lan, S.

Y. Tao, Y. Sugimoto, S. Lan, N. Ikeda, Y. Tanaka, and Y. K. Asakawa, J. Opt. Soc. Am. B 20, 1992 (2003).

S. Nishikawa, S. Lan, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, Opt. Lett. 27, 2079 (2002).
[CrossRef]

Lee, R. K.

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

Litchinitser, N. M.

Madsen, C. K.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

Martnelli, M.

A. Melloni, F. Morichetti, and M. Martnelli, Opt. Quantum Electron. 35, 365 (2003).
[CrossRef]

Melloni, A.

A. Melloni, F. Morichetti, and M. Martnelli, Opt. Quantum Electron. 35, 365 (2003).
[CrossRef]

Morichetti, F.

A. Melloni, F. Morichetti, and M. Martnelli, Opt. Quantum Electron. 35, 365 (2003).
[CrossRef]

Nishikawa, S.

Park, Q.-H.

Scherer, A.

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

Sugimoto, Y.

Y. Tao, Y. Sugimoto, S. Lan, N. Ikeda, Y. Tanaka, and Y. K. Asakawa, J. Opt. Soc. Am. B 20, 1992 (2003).

S. Nishikawa, S. Lan, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, Opt. Lett. 27, 2079 (2002).
[CrossRef]

Tanaka, Y.

Y. Tao, Y. Sugimoto, S. Lan, N. Ikeda, Y. Tanaka, and Y. K. Asakawa, J. Opt. Soc. Am. B 20, 1992 (2003).

Tao, Y.

Y. Tao, Y. Sugimoto, S. Lan, N. Ikeda, Y. Tanaka, and Y. K. Asakawa, J. Opt. Soc. Am. B 20, 1992 (2003).

Wang, Z.

Z. Wang and S. Fan, Phys. Rev. E 68, 066616 (2003).
[CrossRef]

Xu, Y.

Yariv, A.

IEEE J. Quantum Electron. (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

J. E. Heebner and R. W. Boyd, J. Mod. Opt. 49, 2629 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

Y. Tao, Y. Sugimoto, S. Lan, N. Ikeda, Y. Tanaka, and Y. K. Asakawa, J. Opt. Soc. Am. B 20, 1992 (2003).

J. E. Heebner, R. W. Boyd, and Q.-H. Park, J. Opt. Soc. Am. B 19, 722 (2002).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

A. Melloni, F. Morichetti, and M. Martnelli, Opt. Quantum Electron. 35, 365 (2003).
[CrossRef]

Phys. Rev. A (1)

J. B. Khurgin, Phys. Rev. A 62, 3821 (2000).
[CrossRef]

Phys. Rev. E (1)

Z. Wang and S. Fan, Phys. Rev. E 68, 066616 (2003).
[CrossRef]

Other (2)

J. B. Khurgin, “Optical buffers based on slow light in EIT media and coupled resonator structure—a comparative analysis,” J. Opt. Soc. Am. B (to be published).

G. P. Agrawal, Fiber Optic Communication Systems, 4th ed. (Wiley, New York, 2002), p. 43.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Two different slow-wave structures and their dispersion: (a), (c) CRW; (b), (d) SCISSOR.

Fig. 2
Fig. 2

(a) TCRS with global dispersion compensation. (b) Group-delay dispersion for different CRSs. (c) Different group delay as a function of bandwidth for different CRSs.

Fig. 3
Fig. 3

(a) Hybrid CRS (HCRS) with local dispersion compensation. (b) Group-delay dispersion for SCISSOR and HCRS.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Φ1ω=N1βd=2m-1N1π2+N1τ1κ1ω-ω0+N16τ13κ131-κ12ω-ω03+N1120τ15κ151-κ129-κ12ω-ω05+.
κ22 sin ωτ21+ρ22cos ωτ2-2ρ2=tanβ2d2-φ0.
Φ2ω=N2π+φ0+N2τ21+ρ21-ρ2ω-ω0-13N2τ231+ρ2ρ21-ρ23ω-ω03+160N2τ251+ρ2ρ21+10ρ2+ρ221-ρ25ω-ω05.
Tdω0=Φω|ω0=τκ1N1+2N22κ11+ρ2=τκ1N1+21/3N-N12/3N11/3,
BRmax,CRW0.32N-1/3κ/τ,  BRmax,TCRS0.36N-1/5κ/τ.
β=β0+1d sin-1κ1-1 sinωτ1+π+tan-1κ22 sin ωτ21+ρ22cos ωτ2-2ρ2.
β=β0+τdκ112+1+ρ21-ρ2ω-ω0+τ36dκ131-κ1212+1+ρ21-ρ23-2κ12ρ21+ρ21-ρ23ω-ω03+.
κ12=1+ρ21-ρ2+1231+ρ21-ρ2+123+2ρ2ρ+11-ρ3.

Metrics