Abstract

We optically characterize nanolayer (<150 nm) formation in situ on a silica microsphere in an aqueous environment by simultaneously following the shifts of whispering-gallery modes at two wavelengths. This approach was inspired by layer perturbation theory, which indicates that these two measurements can be used to determine independently both the thickness and the optical dielectric constant. The theory is verified for extreme cases and used to characterize a biophysically relevant hydrogel nanolayer with an extremely small excess refractive index of 0.0012.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad, Introduction to Biophotonics (Wiley, New York, 2003).
    [CrossRef]
  2. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, Opt. Lett. 28, 272 (2003).
    [CrossRef] [PubMed]
  3. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, Biophys. J. 85, 1974 (2003).
    [CrossRef] [PubMed]
  4. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge University, Cambridge, England, 1992).
    [CrossRef]
  5. S. Arnold, M. Noto, and F. Vollmer, in Frontiers of Optical Spectroscopy: Investigating Extreme Physical Conditions with Advanced Optical Techniques, B. DiBartolo, ed. (Kluwer Academic, Dordrecht, The Netherlands, to be published).
  6. S. Arnold and S. Holler, in Cavity-Enhanced Spectroscopies, R. D. van Zee and J. P. Looney, eds. (Academic, San Diego, Calif., 2002), pp. 227–253.
  7. E. S. C. Ching, P. T. Leung, and K. Young, in Optical Process in Microcavity, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 1–76.
    [CrossRef]
  8. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
    [CrossRef] [PubMed]
  9. J. P. Laine, B. E. Little, and H. A. Haus, IEEE Photon. Technol. Lett. 11, 1429 (1999).
    [CrossRef]
  10. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
    [CrossRef]
  11. T. J. Su, J. R. Lu, R. K. Thomas, Z. F. Cui, and J. Penfold, J. Phys. Chem. B 102, 8100 (1998).
  12. I. Teraoka, S. Arnold, and F. Vollmer, J. Opt. Soc. Am. B 20, 1937 (2003).
    [CrossRef]

2003

2002

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

1999

J. P. Laine, B. E. Little, and H. A. Haus, IEEE Photon. Technol. Lett. 11, 1429 (1999).
[CrossRef]

1998

T. J. Su, J. R. Lu, R. K. Thomas, Z. F. Cui, and J. Penfold, J. Phys. Chem. B 102, 8100 (1998).

1997

Arnold, S.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, Biophys. J. 85, 1974 (2003).
[CrossRef] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, Opt. Lett. 28, 272 (2003).
[CrossRef] [PubMed]

I. Teraoka, S. Arnold, and F. Vollmer, J. Opt. Soc. Am. B 20, 1937 (2003).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

S. Arnold, M. Noto, and F. Vollmer, in Frontiers of Optical Spectroscopy: Investigating Extreme Physical Conditions with Advanced Optical Techniques, B. DiBartolo, ed. (Kluwer Academic, Dordrecht, The Netherlands, to be published).

S. Arnold and S. Holler, in Cavity-Enhanced Spectroscopies, R. D. van Zee and J. P. Looney, eds. (Academic, San Diego, Calif., 2002), pp. 227–253.

Birks, T. A.

Braun, D.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, Biophys. J. 85, 1974 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

Cheung, G.

Ching, E. S. C.

E. S. C. Ching, P. T. Leung, and K. Young, in Optical Process in Microcavity, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 1–76.
[CrossRef]

Cui, Z. F.

T. J. Su, J. R. Lu, R. K. Thomas, Z. F. Cui, and J. Penfold, J. Phys. Chem. B 102, 8100 (1998).

Haus, H. A.

J. P. Laine, B. E. Little, and H. A. Haus, IEEE Photon. Technol. Lett. 11, 1429 (1999).
[CrossRef]

Holler, S.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, Opt. Lett. 28, 272 (2003).
[CrossRef] [PubMed]

S. Arnold and S. Holler, in Cavity-Enhanced Spectroscopies, R. D. van Zee and J. P. Looney, eds. (Academic, San Diego, Calif., 2002), pp. 227–253.

Jacques, F.

Khoshsima, M.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, Opt. Lett. 28, 272 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

Knight, J. C.

Laine, J. P.

J. P. Laine, B. E. Little, and H. A. Haus, IEEE Photon. Technol. Lett. 11, 1429 (1999).
[CrossRef]

Leung, P. T.

E. S. C. Ching, P. T. Leung, and K. Young, in Optical Process in Microcavity, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 1–76.
[CrossRef]

Libchaber, A.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, Biophys. J. 85, 1974 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

Little, B. E.

J. P. Laine, B. E. Little, and H. A. Haus, IEEE Photon. Technol. Lett. 11, 1429 (1999).
[CrossRef]

Lu, J. R.

T. J. Su, J. R. Lu, R. K. Thomas, Z. F. Cui, and J. Penfold, J. Phys. Chem. B 102, 8100 (1998).

Noto, M.

S. Arnold, M. Noto, and F. Vollmer, in Frontiers of Optical Spectroscopy: Investigating Extreme Physical Conditions with Advanced Optical Techniques, B. DiBartolo, ed. (Kluwer Academic, Dordrecht, The Netherlands, to be published).

Nussenzveig, H. M.

H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge University, Cambridge, England, 1992).
[CrossRef]

Penfold, J.

T. J. Su, J. R. Lu, R. K. Thomas, Z. F. Cui, and J. Penfold, J. Phys. Chem. B 102, 8100 (1998).

Prasad, P. N.

P. N. Prasad, Introduction to Biophotonics (Wiley, New York, 2003).
[CrossRef]

Su, T. J.

T. J. Su, J. R. Lu, R. K. Thomas, Z. F. Cui, and J. Penfold, J. Phys. Chem. B 102, 8100 (1998).

Teraoka, I.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, Opt. Lett. 28, 272 (2003).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, Biophys. J. 85, 1974 (2003).
[CrossRef] [PubMed]

I. Teraoka, S. Arnold, and F. Vollmer, J. Opt. Soc. Am. B 20, 1937 (2003).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

Thomas, R. K.

T. J. Su, J. R. Lu, R. K. Thomas, Z. F. Cui, and J. Penfold, J. Phys. Chem. B 102, 8100 (1998).

Vollmer, F.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, Opt. Lett. 28, 272 (2003).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, Biophys. J. 85, 1974 (2003).
[CrossRef] [PubMed]

I. Teraoka, S. Arnold, and F. Vollmer, J. Opt. Soc. Am. B 20, 1937 (2003).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

S. Arnold, M. Noto, and F. Vollmer, in Frontiers of Optical Spectroscopy: Investigating Extreme Physical Conditions with Advanced Optical Techniques, B. DiBartolo, ed. (Kluwer Academic, Dordrecht, The Netherlands, to be published).

Young, K.

E. S. C. Ching, P. T. Leung, and K. Young, in Optical Process in Microcavity, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 1–76.
[CrossRef]

Appl. Phys. Lett.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

Biophys. J.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, Biophys. J. 85, 1974 (2003).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett.

J. P. Laine, B. E. Little, and H. A. Haus, IEEE Photon. Technol. Lett. 11, 1429 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

T. J. Su, J. R. Lu, R. K. Thomas, Z. F. Cui, and J. Penfold, J. Phys. Chem. B 102, 8100 (1998).

Opt. Lett.

Other

P. N. Prasad, Introduction to Biophotonics (Wiley, New York, 2003).
[CrossRef]

H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge University, Cambridge, England, 1992).
[CrossRef]

S. Arnold, M. Noto, and F. Vollmer, in Frontiers of Optical Spectroscopy: Investigating Extreme Physical Conditions with Advanced Optical Techniques, B. DiBartolo, ed. (Kluwer Academic, Dordrecht, The Netherlands, to be published).

S. Arnold and S. Holler, in Cavity-Enhanced Spectroscopies, R. D. van Zee and J. P. Looney, eds. (Academic, San Diego, Calif., 2002), pp. 227–253.

E. S. C. Ching, P. T. Leung, and K. Young, in Optical Process in Microcavity, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 1–76.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for wavelength multiplexing of a microcavity. LD, laser diode.

Fig. 2
Fig. 2

(a) Resonance shifts at two wavelengths [λ1=760 nm (thin curve) and λ2=1310 nm (thick curve)] owing to BSA adsorption. (b) Resonance shifts at the same wavelengths owing to two sequential injections of NaCl by 0.1-M increments.

Fig. 3
Fig. 3

Plot of δλ/λ760 nm versus δλ/λ1310 nm for BSA layer formation (dots) and for six incremental 0.1-M injections of NaCl (squares). Points represent experimental values and lines represent the layer perturbation theory.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δEeffψrδVeffψr,
δk02k02=-2tRδn2ns2-nm2Lt1-exp-t/L,
S=δλλ1δλλ2L11-exp-t/L1L21-exp-t/L2.

Metrics