Abstract

Photoacoustic tomography (PAT) in a circular scanning configuration was developed to image deeply embedded optical heterogeneity in biological tissues. While the optical penetration was maximized with near-infrared laser pulses of 800-nm wavelength, the optical contrast was enhanced by Indocyanine Green (ICG) dye whose absorption peak matched the laser wavelength. This optimized PAT was able to image objects embedded at depths of as much as 5.2 cm, 6.2 times the 1/e optical penetration depth, in chicken breast muscle at a resolution of <780 µm and a sensitivity of <7 pmol of ICG in blood. The resolution was found to deteriorate slowly with increasing imaging depth. The effects of detection bandwidth on the quality of images acquired simultaneously by four different ultrasonic transducers are described.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, IEEE J. Sel. Top. Quantum Electron. 9, 343 (2003).
    [CrossRef]
  2. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. V. Wang, Nat. Biotechnol. 21, 803 (2003).
    [CrossRef] [PubMed]
  3. G. Ku, X. Wang, X. Xie, G. Stoica, and L.-H. V. Wang, Phys. Med. Biol. 49, 1329 (2004).
    [CrossRef] [PubMed]
  4. R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, IEEE J. Sel. Top. Quantum Electron. 5, 981 (1999).
    [CrossRef]
  5. A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, Laser Phys. 13, 711 (2003).
  6. A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, Proc. SPIE 4618, 81 (2002).
    [CrossRef]
  7. X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L.-H. V. Wang, Opt. Lett. 29, 730 (2004).
    [CrossRef] [PubMed]
  8. Y.-L. He, H. Tanigami, H. Ueyama, T. Mashimo, and I. Yoshiya, Crit. Care Med. 26, 1446 (1998).
    [PubMed]
  9. J. Caesar, S. Shaldon, L. Chiandussi, L. Guevara, and S. Sherlock, Clin. Sci. 21, 43 (1961).
    [PubMed]
  10. B. F. Hochheim, Arch. Ophthalmol. 86, 564 (1971).
    [CrossRef]
  11. M. M. Haglund, M. S. Berger, and D. W. Hochman, Neurosurgery 38, 308 (1996).
    [CrossRef] [PubMed]
  12. American National Standards Institute, “American National Standard for the Safe Use of Lasers,” (American National Standards Institute, Washington, D.C., 2000).
  13. M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J. Appl. Physiol. 40, 575 (1976).
    [PubMed]
  14. M. Xu and L.-H. V. Wang, IEEE Trans. Med. Imag. 21, 814 (2002).
    [CrossRef]

2004 (2)

2003 (3)

A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, Laser Phys. 13, 711 (2003).

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, IEEE J. Sel. Top. Quantum Electron. 9, 343 (2003).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

2002 (2)

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, Proc. SPIE 4618, 81 (2002).
[CrossRef]

M. Xu and L.-H. V. Wang, IEEE Trans. Med. Imag. 21, 814 (2002).
[CrossRef]

1999 (1)

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, IEEE J. Sel. Top. Quantum Electron. 5, 981 (1999).
[CrossRef]

1998 (1)

Y.-L. He, H. Tanigami, H. Ueyama, T. Mashimo, and I. Yoshiya, Crit. Care Med. 26, 1446 (1998).
[PubMed]

1996 (1)

M. M. Haglund, M. S. Berger, and D. W. Hochman, Neurosurgery 38, 308 (1996).
[CrossRef] [PubMed]

1976 (1)

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J. Appl. Physiol. 40, 575 (1976).
[PubMed]

1971 (1)

B. F. Hochheim, Arch. Ophthalmol. 86, 564 (1971).
[CrossRef]

1961 (1)

J. Caesar, S. Shaldon, L. Chiandussi, L. Guevara, and S. Sherlock, Clin. Sci. 21, 43 (1961).
[PubMed]

Andreev, V. G.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, Proc. SPIE 4618, 81 (2002).
[CrossRef]

Berger, M. S.

M. M. Haglund, M. S. Berger, and D. W. Hochman, Neurosurgery 38, 308 (1996).
[CrossRef] [PubMed]

Bornhop, D. J.

Caesar, J.

J. Caesar, S. Shaldon, L. Chiandussi, L. Guevara, and S. Sherlock, Clin. Sci. 21, 43 (1961).
[PubMed]

Chiandussi, L.

J. Caesar, S. Shaldon, L. Chiandussi, L. Guevara, and S. Sherlock, Clin. Sci. 21, 43 (1961).
[PubMed]

de Mul, F. F. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, IEEE J. Sel. Top. Quantum Electron. 9, 343 (2003).
[CrossRef]

Esenaliev, R. O.

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, IEEE J. Sel. Top. Quantum Electron. 5, 981 (1999).
[CrossRef]

Gatalica, Z.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, Proc. SPIE 4618, 81 (2002).
[CrossRef]

Guevara, L.

J. Caesar, S. Shaldon, L. Chiandussi, L. Guevara, and S. Sherlock, Clin. Sci. 21, 43 (1961).
[PubMed]

Haglund, M. M.

M. M. Haglund, M. S. Berger, and D. W. Hochman, Neurosurgery 38, 308 (1996).
[CrossRef] [PubMed]

He, Y.-L.

Y.-L. He, H. Tanigami, H. Ueyama, T. Mashimo, and I. Yoshiya, Crit. Care Med. 26, 1446 (1998).
[PubMed]

Henrichs, P. M.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, Proc. SPIE 4618, 81 (2002).
[CrossRef]

Hochheim, B. F.

B. F. Hochheim, Arch. Ophthalmol. 86, 564 (1971).
[CrossRef]

Hochman, D. W.

M. M. Haglund, M. S. Berger, and D. W. Hochman, Neurosurgery 38, 308 (1996).
[CrossRef] [PubMed]

Hondebrink, E.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, IEEE J. Sel. Top. Quantum Electron. 9, 343 (2003).
[CrossRef]

Karabutov, A. A.

A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, Laser Phys. 13, 711 (2003).

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, Proc. SPIE 4618, 81 (2002).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, IEEE J. Sel. Top. Quantum Electron. 5, 981 (1999).
[CrossRef]

Khamapirad, T.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, Proc. SPIE 4618, 81 (2002).
[CrossRef]

Kolkman, R. G. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, IEEE J. Sel. Top. Quantum Electron. 9, 343 (2003).
[CrossRef]

Ku, G.

G. Ku, X. Wang, X. Xie, G. Stoica, and L.-H. V. Wang, Phys. Med. Biol. 49, 1329 (2004).
[CrossRef] [PubMed]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L.-H. V. Wang, Opt. Lett. 29, 730 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Kwant, G.

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J. Appl. Physiol. 40, 575 (1976).
[PubMed]

Landsman, M. L. J.

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J. Appl. Physiol. 40, 575 (1976).
[PubMed]

Mashimo, T.

Y.-L. He, H. Tanigami, H. Ueyama, T. Mashimo, and I. Yoshiya, Crit. Care Med. 26, 1446 (1998).
[PubMed]

Mook, G. A.

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J. Appl. Physiol. 40, 575 (1976).
[PubMed]

Oraevsky, A. A.

A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, Laser Phys. 13, 711 (2003).

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, Proc. SPIE 4618, 81 (2002).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, IEEE J. Sel. Top. Quantum Electron. 5, 981 (1999).
[CrossRef]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Savateeva, E. V.

A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, Laser Phys. 13, 711 (2003).

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, Proc. SPIE 4618, 81 (2002).
[CrossRef]

Shaldon, S.

J. Caesar, S. Shaldon, L. Chiandussi, L. Guevara, and S. Sherlock, Clin. Sci. 21, 43 (1961).
[PubMed]

Sherlock, S.

J. Caesar, S. Shaldon, L. Chiandussi, L. Guevara, and S. Sherlock, Clin. Sci. 21, 43 (1961).
[PubMed]

Solomatin, S. V.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, Proc. SPIE 4618, 81 (2002).
[CrossRef]

Steenbergen, W.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, IEEE J. Sel. Top. Quantum Electron. 9, 343 (2003).
[CrossRef]

Stoica, G.

G. Ku, X. Wang, X. Xie, G. Stoica, and L.-H. V. Wang, Phys. Med. Biol. 49, 1329 (2004).
[CrossRef] [PubMed]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L.-H. V. Wang, Opt. Lett. 29, 730 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Tanigami, H.

Y.-L. He, H. Tanigami, H. Ueyama, T. Mashimo, and I. Yoshiya, Crit. Care Med. 26, 1446 (1998).
[PubMed]

Ueyama, H.

Y.-L. He, H. Tanigami, H. Ueyama, T. Mashimo, and I. Yoshiya, Crit. Care Med. 26, 1446 (1998).
[PubMed]

Wang, L.-H. V.

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L.-H. V. Wang, Opt. Lett. 29, 730 (2004).
[CrossRef] [PubMed]

G. Ku, X. Wang, X. Xie, G. Stoica, and L.-H. V. Wang, Phys. Med. Biol. 49, 1329 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

M. Xu and L.-H. V. Wang, IEEE Trans. Med. Imag. 21, 814 (2002).
[CrossRef]

Wang, X.

G. Ku, X. Wang, X. Xie, G. Stoica, and L.-H. V. Wang, Phys. Med. Biol. 49, 1329 (2004).
[CrossRef] [PubMed]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L.-H. V. Wang, Opt. Lett. 29, 730 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Wegiel, M. A.

Xie, X.

G. Ku, X. Wang, X. Xie, G. Stoica, and L.-H. V. Wang, Phys. Med. Biol. 49, 1329 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Xu, M.

M. Xu and L.-H. V. Wang, IEEE Trans. Med. Imag. 21, 814 (2002).
[CrossRef]

Yoshiya, I.

Y.-L. He, H. Tanigami, H. Ueyama, T. Mashimo, and I. Yoshiya, Crit. Care Med. 26, 1446 (1998).
[PubMed]

Zijlstra, W. G.

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J. Appl. Physiol. 40, 575 (1976).
[PubMed]

Arch. Ophthalmol. (1)

B. F. Hochheim, Arch. Ophthalmol. 86, 564 (1971).
[CrossRef]

Clin. Sci. (1)

J. Caesar, S. Shaldon, L. Chiandussi, L. Guevara, and S. Sherlock, Clin. Sci. 21, 43 (1961).
[PubMed]

Crit. Care Med. (1)

Y.-L. He, H. Tanigami, H. Ueyama, T. Mashimo, and I. Yoshiya, Crit. Care Med. 26, 1446 (1998).
[PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, IEEE J. Sel. Top. Quantum Electron. 9, 343 (2003).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, IEEE J. Sel. Top. Quantum Electron. 5, 981 (1999).
[CrossRef]

IEEE Trans. Med. Imag. (1)

M. Xu and L.-H. V. Wang, IEEE Trans. Med. Imag. 21, 814 (2002).
[CrossRef]

J. Appl. Physiol. (1)

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J. Appl. Physiol. 40, 575 (1976).
[PubMed]

Laser Phys. (1)

A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, Laser Phys. 13, 711 (2003).

Nat. Biotechnol. (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Neurosurgery (1)

M. M. Haglund, M. S. Berger, and D. W. Hochman, Neurosurgery 38, 308 (1996).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (1)

G. Ku, X. Wang, X. Xie, G. Stoica, and L.-H. V. Wang, Phys. Med. Biol. 49, 1329 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, Proc. SPIE 4618, 81 (2002).
[CrossRef]

Other (1)

American National Standards Institute, “American National Standard for the Safe Use of Lasers,” (American National Standards Institute, Washington, D.C., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for deeply penetrating PAT.

Fig. 2
Fig. 2

Two-dimensional photoacoustic imaging at various depths. Photographs of (a) the cross section of chicken breast tissue in which objects containing blood, ICG, or both are embedded and (b) the entire sample. Two-dimensional photoacoustic images acquired with a 2.25-MHz ultrasonic transducer at depths of (c) 1.3, (d) 2.6, (e) 4.2, and (f) 5.2 cm. Two-dimensional photoacoustic images at a 5.2-cm depth acquired by (g) 3.5- and (h) 5.0-MHz ultrasonic transducers.

Fig. 3
Fig. 3

Transmitted laser light intensity and image width of the tube containing blood and ICG in the photoacoustic images acquired by the 2.25-MHz ultrasonic transducer versus the depth of the imaged cross section in the chicken breast tissue.

Metrics