Abstract

Holographic gratings are recorded in azo-dye nitrobenzoxazole-labeled phospholipid thin films by use of 244-nm UV light. The gratings continue to grow for more than 1 h, even after the recording light is removed. The diffraction efficiency of these gratings shows extreme sensitivity to humidity and can increase reversibly by 2 orders of magnitude in air that is saturated with water vapor. This effect is related to the unique characteristics of phospholipid molecules that undergo hydration-dependent structural reorganization and self-assembly.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Y. Kim, S. K. Tripathi, L. Li, and J. Kumar, Appl. Phys. Lett. 66, 1166 (1995).
    [CrossRef]
  2. P. Rochon and E. Batalla, Appl. Phys. Lett. 66, 136 (1995).
    [CrossRef]
  3. X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, and S. K. Tripathy, Appl. Phys. Lett. 72, 2502 (1998).
    [CrossRef]
  4. H. Takase, A. Natansohn, and P. Rochon, Polymer 44, 7345 (2003).
    [CrossRef]
  5. S. Bai and Y. Zhao, Macromolecules 35, 9657 (2002).
    [CrossRef]
  6. P. S. Ramanujam, L. Nedelchev, and A. Matharu, Opt. Lett. 28, 1072 (2003).
    [CrossRef] [PubMed]
  7. J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, Appl. Phys. Lett. 72, 2096 (1998).
    [CrossRef]
  8. Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, Phys. Rev. E 65, 052801 (2002).
    [CrossRef]
  9. E. Sackmann, Science 271, 43 (1996).
    [CrossRef] [PubMed]
  10. C. K. Yee, M. L. Amweg, and A. N. Parikh, Adv. Mater. 16, 1184 (2004).
    [CrossRef]
  11. H. Binder, Appl. Spectrosc. Rev. 38, 15 (2003).
    [CrossRef]
  12. M. Seul and M. J. Sammon, Thin Solid Films 185, 287 (1990).
    [CrossRef]
  13. V. Schaedler, C. Nardin, U. Wiesner, and E. Mendes, J. Chem. Phys. B 104, 5049 (2000).
  14. T. Salditt, Curr. Opin. Colloid Interf. Sci. 5, 19 (2000).
    [CrossRef]

2004 (1)

C. K. Yee, M. L. Amweg, and A. N. Parikh, Adv. Mater. 16, 1184 (2004).
[CrossRef]

2003 (3)

H. Binder, Appl. Spectrosc. Rev. 38, 15 (2003).
[CrossRef]

H. Takase, A. Natansohn, and P. Rochon, Polymer 44, 7345 (2003).
[CrossRef]

P. S. Ramanujam, L. Nedelchev, and A. Matharu, Opt. Lett. 28, 1072 (2003).
[CrossRef] [PubMed]

2002 (2)

S. Bai and Y. Zhao, Macromolecules 35, 9657 (2002).
[CrossRef]

Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, Phys. Rev. E 65, 052801 (2002).
[CrossRef]

2000 (2)

V. Schaedler, C. Nardin, U. Wiesner, and E. Mendes, J. Chem. Phys. B 104, 5049 (2000).

T. Salditt, Curr. Opin. Colloid Interf. Sci. 5, 19 (2000).
[CrossRef]

1998 (2)

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, Appl. Phys. Lett. 72, 2096 (1998).
[CrossRef]

X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, and S. K. Tripathy, Appl. Phys. Lett. 72, 2502 (1998).
[CrossRef]

1996 (1)

E. Sackmann, Science 271, 43 (1996).
[CrossRef] [PubMed]

1995 (2)

D. Y. Kim, S. K. Tripathi, L. Li, and J. Kumar, Appl. Phys. Lett. 66, 1166 (1995).
[CrossRef]

P. Rochon and E. Batalla, Appl. Phys. Lett. 66, 136 (1995).
[CrossRef]

1990 (1)

M. Seul and M. J. Sammon, Thin Solid Films 185, 287 (1990).
[CrossRef]

Amweg, M. L.

C. K. Yee, M. L. Amweg, and A. N. Parikh, Adv. Mater. 16, 1184 (2004).
[CrossRef]

Bai, S.

S. Bai and Y. Zhao, Macromolecules 35, 9657 (2002).
[CrossRef]

Batalla, E.

P. Rochon and E. Batalla, Appl. Phys. Lett. 66, 136 (1995).
[CrossRef]

Binder, H.

H. Binder, Appl. Spectrosc. Rev. 38, 15 (2003).
[CrossRef]

Geue, Th.

Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, Phys. Rev. E 65, 052801 (2002).
[CrossRef]

Henneberg, O.

Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, Phys. Rev. E 65, 052801 (2002).
[CrossRef]

Jiang, X. L.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, Appl. Phys. Lett. 72, 2096 (1998).
[CrossRef]

X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, and S. K. Tripathy, Appl. Phys. Lett. 72, 2502 (1998).
[CrossRef]

Kim, D. Y.

X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, and S. K. Tripathy, Appl. Phys. Lett. 72, 2502 (1998).
[CrossRef]

D. Y. Kim, S. K. Tripathi, L. Li, and J. Kumar, Appl. Phys. Lett. 66, 1166 (1995).
[CrossRef]

Kim, D.-Y.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, Appl. Phys. Lett. 72, 2096 (1998).
[CrossRef]

Kumar, J.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, Appl. Phys. Lett. 72, 2096 (1998).
[CrossRef]

X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, and S. K. Tripathy, Appl. Phys. Lett. 72, 2502 (1998).
[CrossRef]

D. Y. Kim, S. K. Tripathi, L. Li, and J. Kumar, Appl. Phys. Lett. 66, 1166 (1995).
[CrossRef]

Lee, T. S.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, Appl. Phys. Lett. 72, 2096 (1998).
[CrossRef]

Li, L.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, Appl. Phys. Lett. 72, 2096 (1998).
[CrossRef]

X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, and S. K. Tripathy, Appl. Phys. Lett. 72, 2502 (1998).
[CrossRef]

D. Y. Kim, S. K. Tripathi, L. Li, and J. Kumar, Appl. Phys. Lett. 66, 1166 (1995).
[CrossRef]

Matharu, A.

Mendes, E.

V. Schaedler, C. Nardin, U. Wiesner, and E. Mendes, J. Chem. Phys. B 104, 5049 (2000).

Nardin, C.

V. Schaedler, C. Nardin, U. Wiesner, and E. Mendes, J. Chem. Phys. B 104, 5049 (2000).

Natansohn, A.

H. Takase, A. Natansohn, and P. Rochon, Polymer 44, 7345 (2003).
[CrossRef]

Natansohn, A. L.

Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, Phys. Rev. E 65, 052801 (2002).
[CrossRef]

Nedelchev, L.

Parikh, A. N.

C. K. Yee, M. L. Amweg, and A. N. Parikh, Adv. Mater. 16, 1184 (2004).
[CrossRef]

Pietsch, U.

Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, Phys. Rev. E 65, 052801 (2002).
[CrossRef]

Ramanujam, P. S.

Rochon, P.

H. Takase, A. Natansohn, and P. Rochon, Polymer 44, 7345 (2003).
[CrossRef]

P. Rochon and E. Batalla, Appl. Phys. Lett. 66, 136 (1995).
[CrossRef]

Rochon, P. L.

Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, Phys. Rev. E 65, 052801 (2002).
[CrossRef]

Sackmann, E.

E. Sackmann, Science 271, 43 (1996).
[CrossRef] [PubMed]

Salditt, T.

T. Salditt, Curr. Opin. Colloid Interf. Sci. 5, 19 (2000).
[CrossRef]

Sammon, M. J.

M. Seul and M. J. Sammon, Thin Solid Films 185, 287 (1990).
[CrossRef]

Saphiannikova, M. G.

Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, Phys. Rev. E 65, 052801 (2002).
[CrossRef]

Schaedler, V.

V. Schaedler, C. Nardin, U. Wiesner, and E. Mendes, J. Chem. Phys. B 104, 5049 (2000).

Seul, M.

M. Seul and M. J. Sammon, Thin Solid Films 185, 287 (1990).
[CrossRef]

Takase, H.

H. Takase, A. Natansohn, and P. Rochon, Polymer 44, 7345 (2003).
[CrossRef]

Tripathi, S.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, Appl. Phys. Lett. 72, 2096 (1998).
[CrossRef]

Tripathi, S. K.

D. Y. Kim, S. K. Tripathi, L. Li, and J. Kumar, Appl. Phys. Lett. 66, 1166 (1995).
[CrossRef]

Tripathy, S. K.

X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, and S. K. Tripathy, Appl. Phys. Lett. 72, 2502 (1998).
[CrossRef]

Wiesner, U.

V. Schaedler, C. Nardin, U. Wiesner, and E. Mendes, J. Chem. Phys. B 104, 5049 (2000).

Yee, C. K.

C. K. Yee, M. L. Amweg, and A. N. Parikh, Adv. Mater. 16, 1184 (2004).
[CrossRef]

Zhao, Y.

S. Bai and Y. Zhao, Macromolecules 35, 9657 (2002).
[CrossRef]

Adv. Mater. (1)

C. K. Yee, M. L. Amweg, and A. N. Parikh, Adv. Mater. 16, 1184 (2004).
[CrossRef]

Appl. Phys. Lett. (4)

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, Appl. Phys. Lett. 72, 2096 (1998).
[CrossRef]

D. Y. Kim, S. K. Tripathi, L. Li, and J. Kumar, Appl. Phys. Lett. 66, 1166 (1995).
[CrossRef]

P. Rochon and E. Batalla, Appl. Phys. Lett. 66, 136 (1995).
[CrossRef]

X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, and S. K. Tripathy, Appl. Phys. Lett. 72, 2502 (1998).
[CrossRef]

Appl. Spectrosc. Rev. (1)

H. Binder, Appl. Spectrosc. Rev. 38, 15 (2003).
[CrossRef]

Curr. Opin. Colloid Interf. Sci. (1)

T. Salditt, Curr. Opin. Colloid Interf. Sci. 5, 19 (2000).
[CrossRef]

J. Chem. Phys. B (1)

V. Schaedler, C. Nardin, U. Wiesner, and E. Mendes, J. Chem. Phys. B 104, 5049 (2000).

Macromolecules (1)

S. Bai and Y. Zhao, Macromolecules 35, 9657 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. E (1)

Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, Phys. Rev. E 65, 052801 (2002).
[CrossRef]

Polymer (1)

H. Takase, A. Natansohn, and P. Rochon, Polymer 44, 7345 (2003).
[CrossRef]

Science (1)

E. Sackmann, Science 271, 43 (1996).
[CrossRef] [PubMed]

Thin Solid Films (1)

M. Seul and M. J. Sammon, Thin Solid Films 185, 287 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the holographic technique for writing gratings on thin films with a 244-nm UV laser. The electron-beam-etched silica phase mask (QPS, Canada) has a period of 1800 nm and results in a thin-film grating with a period of 900 nm. A normally incident 633-nm He–Ne laser creates four first-order (two in reflection and two in transmission) diffracted beams. Grating formation is investigated with any of these four beams.

Fig. 2
Fig. 2

Growth of a thin-film grating with 10 mW of power in each UV beam. The arrow indicates the position beyond which the 244-nm UV laser is kept blocked.

Fig. 3
Fig. 3

Growth of gratings before they saturate. The growth curves are for powers of 10 ×, 5 +, 3 , and 1 mW in each of the two UV writing beams. The growth curve for 3 mW was fitted with a solid curve by use of Eq. (1) for α=0.234 a.u. min-1 and β=0.146 min-1.

Fig. 4
Fig. 4

Effect of switching the UV laser (10 mW in each beam) off and on over several cycles on the growth and decay of gratings. Switching the UV off or on is indicated at some locations by an upward or downward arrow.

Fig. 5
Fig. 5

Permanent and reversible component of grating decay caused by exposure to an UV laser. A single UV beam (20 mW) is used to prevent further holographic growth.

Fig. 6
Fig. 6

Transient surge of diffracted He–Ne light when a grating is placed in a stream of humid air saturated with water vapor.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

IHeNe=αt expβt.

Metrics