Abstract

Molecular contrast in optical coherence tomography (OCT) is demonstrated by use of coherent anti-Stokes Raman scattering (CARS) for molecular sensitivity. Femtosecond laser pulses are focused into a sample by use of a low-numerical-aperture lens to generate CARS photons, and the backreflected CARS signal is interferometrically measured. With the chemical selectivity provided by CARS and the advanced imaging capabilities of OCT, this technique may be useful for molecular contrast imaging in biological tissues. CARS can be generated and interferometrically measured over at least 600 µm of the depth of field of a low-numerical-aperture objective.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
    [CrossRef] [PubMed]
  2. C. Yang, M. A. Choma, L. E. Lamb, J. D. Simon, and J. A. Izatt, Opt. Lett. 29, 1396 (2004).
    [CrossRef] [PubMed]
  3. D. L. Marks and S. A. Boppart, Phys. Rev. Lett. 92, 123905 (2004).
    [CrossRef]
  4. C. Vinegoni, J. S. Bredfeldt, D. L. Marks, and S. A. Boppart, Opt. Express 12, 331 (2004), http://www.opticsexpress.org .
    [CrossRef]
  5. Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, Opt. Lett. 29, 1090 (2004).
    [CrossRef]
  6. J.-X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).

2004 (5)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Boppart, S. A.

Bredfeldt, J. S.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Chen, Z.

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).

Choma, M. A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

Jiang, Y.

Lamb, L. E.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Marks, D. L.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Simon, J. D.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Tomov, I.

Vinegoni, C.

Wang, Y.

Xie, X. S.

J.-X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).

Yang, C.

J. Phys. Chem. B (1)

J.-X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

D. L. Marks and S. A. Boppart, Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: Regen, regenerative amplifier; G, galvanometer-controlled optical delay; M1–M3, long-pass dichroic mirrors with different cutoffs; P, pump; S, Stokes; AS, anti-Stokes; L1, 30-mm focal-length lens; SA, sample; L2, 10× microscope objective; SMF, single-mode fiber; PC, polarization controller; APD, avalanche photodiode; DAQ, data acquisition.

Fig. 2
Fig. 2

CARS interferogram as measured from acetone. Inset, log–log plots of the intensity of the CARS signal.4

Fig. 3
Fig. 3

(a) Schematic of the multilayer sample structure used to demonstrate molecularly sensitive interferometric ranging and OCT: G, glass. The thickness of each layer in the drawing represents the optical path length through that layer at the pump wavelength. Demodulated interferograms of the sample measured by (b) standard OCT and (c) CARS ranging. The inset in (c) shows demodulated interferometric data acquired in the absence of the Stokes pulses, indicating that CARS is generated only with the Stokes pulses present.

Fig. 4
Fig. 4

Molecularly sensitive OCT image of the CARS signal generated from a thin, lipid-dense layer of beef tissue, sandwiched between two glass slides. The signal observed was mainly the result of forward CARS scattered off the tissue–glass interface. The scale bar represents 100 µm in both the axial and transverse directions.

Metrics