Abstract

We demonstrate a digital holographic method in which two different substances in a blend are discerned. The method requires only one set of exposures and one reconstruction in the plane of focus. The phase is unwrapped by Flynn’s discontinuity algorithm to produce an image of the variation of the optical distance of the illuminating wave. Objects with indices of refraction that are higher and lower than the mounting liquid are detected as regions in which the phase is increased and decreased, respectively. We also present a method for calculating the volume distribution of substrates in a sample. The method is experimentally demonstrated with crystals of NaCl and KCl.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, Appl. Opt. 31, 4973 (1992).
    [CrossRef] [PubMed]
  2. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 38, 6994 (1999).
    [CrossRef]
  3. U. Schnars and W. P. O. Jüptner, Meas. Sci. Technol. 13, R85 (2002).
    [CrossRef]
  4. S. Seebacher, W. Osten, T. Baumbach, and W. Jüptner, Opt. Lasers Eng. 36, 103 (2001).
    [CrossRef]
  5. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Cell. Biol. 98, 11,301 (2001).
  6. M. Gustafsson, M. Sebesta, B. Bengtsson, S.-G. Pettersson, P. Egelberg, and T. Lenart, Opt. Lasers Eng. 41, 553 (2004).
    [CrossRef]
  7. T. Zhang and I. Yamaguchi, Opt. Lett. 23, 1221 (1998).
    [CrossRef]
  8. F. Dubois, L. Joannes, and L.-C. Legros, Appl. Opt. 38, 7085 (1999).
    [CrossRef]
  9. F. Dubois, C. Minetti, O. Monnom, C. Yourassowsky, J. C. Legros, and P. Kischel, Appl. Opt. 41, 4108 (2002).
    [CrossRef] [PubMed]
  10. M. Gustafsson and M. Sebesta, Appl. Opt. 43, 4796 (2004).
    [CrossRef] [PubMed]
  11. T. Lenart, V. Öwall, M. Gustafsson, M. Sebesta, and P. Egelberg, in IEEE International Conference on Field-Programmable Technology (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 387–390.
  12. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).

2004 (2)

M. Gustafsson, M. Sebesta, B. Bengtsson, S.-G. Pettersson, P. Egelberg, and T. Lenart, Opt. Lasers Eng. 41, 553 (2004).
[CrossRef]

M. Gustafsson and M. Sebesta, Appl. Opt. 43, 4796 (2004).
[CrossRef] [PubMed]

2002 (2)

2001 (2)

S. Seebacher, W. Osten, T. Baumbach, and W. Jüptner, Opt. Lasers Eng. 36, 103 (2001).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Cell. Biol. 98, 11,301 (2001).

1999 (2)

1998 (1)

1992 (1)

Baumbach, T.

S. Seebacher, W. Osten, T. Baumbach, and W. Jüptner, Opt. Lasers Eng. 36, 103 (2001).
[CrossRef]

Bengtsson, B.

M. Gustafsson, M. Sebesta, B. Bengtsson, S.-G. Pettersson, P. Egelberg, and T. Lenart, Opt. Lasers Eng. 41, 553 (2004).
[CrossRef]

Boyer, K.

Cuche, E.

Cullen, D.

Depeursinge, C.

Dubois, F.

Egelberg, P.

M. Gustafsson, M. Sebesta, B. Bengtsson, S.-G. Pettersson, P. Egelberg, and T. Lenart, Opt. Lasers Eng. 41, 553 (2004).
[CrossRef]

T. Lenart, V. Öwall, M. Gustafsson, M. Sebesta, and P. Egelberg, in IEEE International Conference on Field-Programmable Technology (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 387–390.

Ghiglia, D. C.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).

Gustafsson, M.

M. Gustafsson and M. Sebesta, Appl. Opt. 43, 4796 (2004).
[CrossRef] [PubMed]

M. Gustafsson, M. Sebesta, B. Bengtsson, S.-G. Pettersson, P. Egelberg, and T. Lenart, Opt. Lasers Eng. 41, 553 (2004).
[CrossRef]

T. Lenart, V. Öwall, M. Gustafsson, M. Sebesta, and P. Egelberg, in IEEE International Conference on Field-Programmable Technology (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 387–390.

Haddad, W. S.

Jericho, M. H.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Cell. Biol. 98, 11,301 (2001).

Joannes, L.

Jüptner, W.

S. Seebacher, W. Osten, T. Baumbach, and W. Jüptner, Opt. Lasers Eng. 36, 103 (2001).
[CrossRef]

Jüptner, W. P. O.

U. Schnars and W. P. O. Jüptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Kischel, P.

Kreuzer, H. J.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Cell. Biol. 98, 11,301 (2001).

Legros, J. C.

Legros, L.-C.

Lenart, T.

M. Gustafsson, M. Sebesta, B. Bengtsson, S.-G. Pettersson, P. Egelberg, and T. Lenart, Opt. Lasers Eng. 41, 553 (2004).
[CrossRef]

T. Lenart, V. Öwall, M. Gustafsson, M. Sebesta, and P. Egelberg, in IEEE International Conference on Field-Programmable Technology (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 387–390.

Longworth, J. W.

Marquet, P.

McPherson, A.

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Cell. Biol. 98, 11,301 (2001).

Minetti, C.

Monnom, O.

Osten, W.

S. Seebacher, W. Osten, T. Baumbach, and W. Jüptner, Opt. Lasers Eng. 36, 103 (2001).
[CrossRef]

Öwall, V.

T. Lenart, V. Öwall, M. Gustafsson, M. Sebesta, and P. Egelberg, in IEEE International Conference on Field-Programmable Technology (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 387–390.

Pettersson, S.-G.

M. Gustafsson, M. Sebesta, B. Bengtsson, S.-G. Pettersson, P. Egelberg, and T. Lenart, Opt. Lasers Eng. 41, 553 (2004).
[CrossRef]

Pritt, M. D.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).

Rhodes, C. K.

Schnars, U.

U. Schnars and W. P. O. Jüptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Sebesta, M.

M. Gustafsson and M. Sebesta, Appl. Opt. 43, 4796 (2004).
[CrossRef] [PubMed]

M. Gustafsson, M. Sebesta, B. Bengtsson, S.-G. Pettersson, P. Egelberg, and T. Lenart, Opt. Lasers Eng. 41, 553 (2004).
[CrossRef]

T. Lenart, V. Öwall, M. Gustafsson, M. Sebesta, and P. Egelberg, in IEEE International Conference on Field-Programmable Technology (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 387–390.

Seebacher, S.

S. Seebacher, W. Osten, T. Baumbach, and W. Jüptner, Opt. Lasers Eng. 36, 103 (2001).
[CrossRef]

Solem, J. C.

Xu, W.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Cell. Biol. 98, 11,301 (2001).

Yamaguchi, I.

Yourassowsky, C.

Zhang, T.

Appl. Opt. (5)

Cell. Biol. (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Cell. Biol. 98, 11,301 (2001).

Meas. Sci. Technol. (1)

U. Schnars and W. P. O. Jüptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Opt. Lasers Eng. (2)

S. Seebacher, W. Osten, T. Baumbach, and W. Jüptner, Opt. Lasers Eng. 36, 103 (2001).
[CrossRef]

M. Gustafsson, M. Sebesta, B. Bengtsson, S.-G. Pettersson, P. Egelberg, and T. Lenart, Opt. Lasers Eng. 41, 553 (2004).
[CrossRef]

Opt. Lett. (1)

Other (2)

T. Lenart, V. Öwall, M. Gustafsson, M. Sebesta, and P. Egelberg, in IEEE International Conference on Field-Programmable Technology (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 387–390.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of the phase shift when a wave impinges on objects with indices of refraction that are lower and higher than the mounting medium. Object1 and Object2 have indices of refraction that are lower and higher than the mounting liquid, respectively. The phase shift is proportional to the variation of the relative index of refraction times the thickness of the object.

Fig. 2
Fig. 2

Digital Fourier holographic setup. A beam splitter reflects the reference point source, which creates a virtual point source close to the object. GRIN, gradient index.

Fig. 3
Fig. 3

Images of KCl crystals mounted in a refractive-index liquid. (a) Phase-contrast image. The large-scale variation of the phase is due to the slightly divergent beam of the illuminating wave. (b) Unwrapped and background-corrected phase image. The KCl crystals appear brighter than the surrounding because of their relatively lower index of refraction.

Fig. 4
Fig. 4

Unwrapped and background-corrected phase images. (a) NaCl crystals appear darker than the surrounding because of their relatively higher index of refraction. (b) In a mixture the KCl and NaCl crystals are identified as bright and dark objects, respectively.

Fig. 5
Fig. 5

Image depicting the thickness of a mixture of NaCl and KCl crystals where bright and dark shades characterize KCl and NaCl crystals, respectively. The corresponding calculated volume fractions of KCl and NaCl are 55% and 45%, respectively.

Metrics