Abstract

We fabricate and demonstrate strain-insensitive and high-temperature long-period gratings in endlessly single-mode photonic crystal fiber by use of focused pulses of a CO2 laser and a periodic stress relaxation technique without geometrical deformation and elongation of the fiber. The thermal dependence of mode coupling at 1299.59 nm is 10.9 pm/°C from 24 to 992 °C, whereas the coefficient of strain sensitivity is -0.192 pm/μϵ up to the maximum strain of 2.74%ϵ. It is found for what is believed to be the first time that, in contrast with the traditional fiber case, the coupling resonance shifts toward shorter wavelengths under applied strain, indicating that the refractive index of the core is decreased as a result of the rebuilding of tension attributed to the stress-elastic effect, and the cladding modes is highly dispersive because of airholes arranged in the fiber cladding.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
    [CrossRef]
  2. G. Kakarantzas, A. Ortigosa-Mlanch, T. A. Birks, and P. St. J. Russell, Opt. Lett. 27, 1013 (2002).
    [CrossRef]
  3. K. Morishita and Y. Miyake, J. Lightwave Technol. 22, 625 (2004).
    [CrossRef]
  4. J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, Opt. Lett. 29, 331 (2004).
    [CrossRef] [PubMed]
  5. T. Birks, J. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  6. B. H. Lee, J.-B. Eom, J. Kim, D.-S. Moon, U.-C. Paek, and G.-H. Yang, Opt. Lett. 27, 812 (2002).
    [CrossRef]
  7. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, Opt. Lett. 28, 233 (2003).
    [CrossRef]
  8. A. Malki, G. Humbert, Y. Ouerdane, A. Boukhenter, and A. Boudrioua, Appl. Opt. 42, 3776 (2003).
    [CrossRef] [PubMed]
  9. B. H. Kim, T.-J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U.-C. Paek, and W.-T. Han, Appl. Opt. 41, 3809 (2002).
    [CrossRef] [PubMed]
  10. G. Humbert, A. Malki, S. Febrier, P. Roy, and D. Pagnoux, Opt. Lett. 29, 38 (2004).
    [CrossRef] [PubMed]
  11. J. Zhou, K. Tajima, K. Kurokawa, K. Nakajima, and I. Sankawa, in Optical Fiber Communication Conference (OFC), Vol. 3 of 2004 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2004), paper WI2.
  12. Y. Zhu, P. Shum, J.-H. Chong, M. K. Rao, and C. Lu, Opt. Lett. 28, 2467 (2003).
    [CrossRef] [PubMed]

2004 (3)

2003 (3)

2002 (3)

1997 (1)

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Ahn, T.-J.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Birks, T.

Birks, T. A.

Boudrioua, A.

Boukhenter, A.

Chong, J.-H.

Chung, Y.

Eom, J.-B.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Febrier, S.

Han, W.-T.

Humbert, G.

Jang, H. S.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Kakarantzas, G.

Kim, B. H.

Kim, D. Y.

Kim, J.

Kim, J. C.

Knight, J.

Kurokawa, K.

J. Zhou, K. Tajima, K. Kurokawa, K. Nakajima, and I. Sankawa, in Optical Fiber Communication Conference (OFC), Vol. 3 of 2004 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2004), paper WI2.

Lee, B. H.

Lee, K. S.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Lim, J. H.

Lu, C.

Malki, A.

Miyake, Y.

Moon, D.-S.

Morishita, K.

Nakajima, K.

J. Zhou, K. Tajima, K. Kurokawa, K. Nakajima, and I. Sankawa, in Optical Fiber Communication Conference (OFC), Vol. 3 of 2004 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2004), paper WI2.

Ortigosa-Mlanch, A.

Ouerdane, Y.

Paek, U.-C.

Pagnoux, D.

Rao, M. K.

Roy, P.

Russell, P. St. J.

Sankawa, I.

J. Zhou, K. Tajima, K. Kurokawa, K. Nakajima, and I. Sankawa, in Optical Fiber Communication Conference (OFC), Vol. 3 of 2004 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2004), paper WI2.

Shum, P.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Tajima, K.

J. Zhou, K. Tajima, K. Kurokawa, K. Nakajima, and I. Sankawa, in Optical Fiber Communication Conference (OFC), Vol. 3 of 2004 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2004), paper WI2.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Yang, G.-H.

Zhou, J.

J. Zhou, K. Tajima, K. Kurokawa, K. Nakajima, and I. Sankawa, in Optical Fiber Communication Conference (OFC), Vol. 3 of 2004 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2004), paper WI2.

Zhu, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of refractive-index change in PCF with mechanical stress relaxation.

Fig. 2
Fig. 2

Transmission spectra of resonance wavelengths of LPGs in ESM-PCF and SMF-28 fiber at room temperature, before and after 1 h at 992 °C. Inset, optical micrograph of the ESM-PCF’s appearance with the LPG. No physical deformation was observed after the ESM-PCF was treated with a CO2-laser heat source.

Fig. 3
Fig. 3

Resonance wavelength shift with temperature variation of LPGs in ESM-PCF and SMF-28. Insets, scanning electron microscope images of the ESM-PCF cross section at (top) 1000 °C and (bottom) 1300 °C.

Fig. 4
Fig. 4

Transmission spectra of a resonance wavelength of a LPG in ESM-PCF under differing applied strain. Insets: top, resonance wavelength and transmission strength of a LPG in ESM-PCF versus applied strain from 0.21 to 2.74%ϵ; bottom, optical micrograph of a fiber fracture in the LPG region under a critical applied strain of 2.75%ϵ.

Metrics