Abstract

We report that stimulated Brillouin scattering (SBS) in a dispersion-decreasing fiber (DDF) is particularly disadvantageous with ultrahigh-speed femtosecond soliton compression that exceeds 40 GHz. It is important to note that the increase in the longitudinal mode power of a soliton is proportional to the square of the repetition rate. The SBS threshold is determined by the dispersion-decreasing rate of the DDF, rather than its fiber loss. We suppressed the SBS by applying 30-MHz frequency modulation to a mode-locked fiber laser and successfully obtained a stable 40-GHz, 100-fs pulse train.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers (Marcel Dekker, New York, 2002).
    [CrossRef]
  2. S. V. Chernikov and P. V. Mamyshev, J. Opt. Soc. Am. B 8, 1633 (1991).
    [CrossRef]
  3. M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, Electron. Lett. 30, 2038 (1994).
    [CrossRef]
  4. K. R. Tamura and M. Nakazawa, Opt. Lett. 26, 762 (2001).
    [CrossRef]
  5. K. R. Tamura and K. Sato, Opt. Lett. 27, 1268 (2002).
    [CrossRef]
  6. E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
    [CrossRef]
  7. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford U. Press, Oxford, England, 1995).
  8. R. G. Smith, Appl. Opt. 11, 2489 (1972).
    [CrossRef] [PubMed]
  9. P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
    [CrossRef]
  10. C. Montes and A. M. Rubenchik, J. Opt. Soc. Am. B 9, 1857 (1992).
    [CrossRef]
  11. M. Denariez and G. Bret, Phys. Rev. 171, 160 (1968).
    [CrossRef]
  12. S. Choi, M. Yoshida, and M. Nakazawa, IEICE Trans. Electron. J86-C, 1054 (2003).

2003 (1)

S. Choi, M. Yoshida, and M. Nakazawa, IEICE Trans. Electron. J86-C, 1054 (2003).

2002 (1)

2001 (1)

1994 (1)

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, Electron. Lett. 30, 2038 (1994).
[CrossRef]

1992 (1)

1991 (2)

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

S. V. Chernikov and P. V. Mamyshev, J. Opt. Soc. Am. B 8, 1633 (1991).
[CrossRef]

1972 (2)

E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

R. G. Smith, Appl. Opt. 11, 2489 (1972).
[CrossRef] [PubMed]

1968 (1)

M. Denariez and G. Bret, Phys. Rev. 171, 160 (1968).
[CrossRef]

Bret, G.

M. Denariez and G. Bret, Phys. Rev. 171, 160 (1968).
[CrossRef]

Chernikov, S. V.

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

S. V. Chernikov and P. V. Mamyshev, J. Opt. Soc. Am. B 8, 1633 (1991).
[CrossRef]

Choi, S.

S. Choi, M. Yoshida, and M. Nakazawa, IEICE Trans. Electron. J86-C, 1054 (2003).

Denariez, M.

M. Denariez and G. Bret, Phys. Rev. 171, 160 (1968).
[CrossRef]

Dianov, E. M.

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

Fermann, M. E.

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers (Marcel Dekker, New York, 2002).
[CrossRef]

Galvanauskas, A.

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers (Marcel Dekker, New York, 2002).
[CrossRef]

Hasegawa, A.

A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford U. Press, Oxford, England, 1995).

Ippen, E. P.

E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

Kimura, Y.

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, Electron. Lett. 30, 2038 (1994).
[CrossRef]

Kodama, Y.

A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford U. Press, Oxford, England, 1995).

Kubota, H.

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, Electron. Lett. 30, 2038 (1994).
[CrossRef]

Mamyshev, P. V.

S. V. Chernikov and P. V. Mamyshev, J. Opt. Soc. Am. B 8, 1633 (1991).
[CrossRef]

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

Montes, C.

Nakazawa, M.

S. Choi, M. Yoshida, and M. Nakazawa, IEICE Trans. Electron. J86-C, 1054 (2003).

K. R. Tamura and M. Nakazawa, Opt. Lett. 26, 762 (2001).
[CrossRef]

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, Electron. Lett. 30, 2038 (1994).
[CrossRef]

Rubenchik, A. M.

Sato, K.

Smith, R. G.

Stolen, R. H.

E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

Sucha, G.

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers (Marcel Dekker, New York, 2002).
[CrossRef]

Tamura, K. R.

Yoshida, E.

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, Electron. Lett. 30, 2038 (1994).
[CrossRef]

Yoshida, M.

S. Choi, M. Yoshida, and M. Nakazawa, IEICE Trans. Electron. J86-C, 1054 (2003).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

Electron. Lett. (1)

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, Electron. Lett. 30, 2038 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

IEICE Trans. Electron. (1)

S. Choi, M. Yoshida, and M. Nakazawa, IEICE Trans. Electron. J86-C, 1054 (2003).

J. Opt. Soc. Am. B (2)

Opt. Lett. (2)

Phys. Rev. (1)

M. Denariez and G. Bret, Phys. Rev. 171, 160 (1968).
[CrossRef]

Other (2)

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers (Marcel Dekker, New York, 2002).
[CrossRef]

A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford U. Press, Oxford, England, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Soliton power per mode versus repetition rate. The SBS threshold power is 24.3 mW.

Fig. 2
Fig. 2

Experimental setup. Abbreviations are defined in the text.

Fig. 3
Fig. 3

Optical spectrum of the backscattered light (a) without frequency modulation and (b) with 30-MHz frequency modulation. The modes denoted by the arrows are the SBS. The inset in (a) shows an expanded view of the central backscattered mode.

Fig. 4
Fig. 4

SBS characteristics in DDF: (a) optical power of the central backscattered mode in DDF versus the soliton order N of the input pulse and (b) transmitted and backscattered power versus input power.

Fig. 5
Fig. 5

Compression characteristics: (a) input and output autocorrelation waveforms (dotted and solid curves, respectively). The inset of (a) shows an expanded view of the center of the waveforms. (b) Output spectrum (solid) and its sech fit (dotted).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

PavgN=1=0.776λ3π2cn2DΔτBAeff,
P0=PavgN=1M=2.463λ3Aeffπ2cn2DB2,
Leff=1D00LDzdz,
Leff=1-exp-ΓL/Γ.
Leff=L-αL2/2.
gBP00Leff/Aeff=21,
gB=ΔνB/ΔνB+ΔνpgB,

Metrics