Abstract

We present a new technique for measuring ultrashort optical pulses by use of spectral phase interferometry for direct electric-field reconstruction that is suitable for large bandwidth pulses. The method does not require generation of a replica of the pulse to be measured and encodes the spectral phase information in a spatial interference pattern. A major advantage of this method is that the spectral sampling saturates the Whittaker–Shannon bound. Moreover, the technique allows for the characterization of some types of space–time coupling. An experimental demonstration of the technique is presented.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]
  2. R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
    [CrossRef]
  3. J. L. A. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
    [CrossRef]
  4. K. C. Chu, J. P. Heritage, R. S. Grant, K. X. Liu, A. Dienes, W. E. White, and A. Sullivan, Opt. Lett. 20, 904 (1995).
    [CrossRef] [PubMed]
  5. D. T. Reid, IEEE J. Quantum Electron. 35, 1584 (1999).
    [CrossRef]
  6. V. A. Zubov and T. I. Kuznetsova, Sov. J. Quantum Electron. 21, 1285 (1991).
    [CrossRef]
  7. V. Wong and I. A. Walmsley, Opt. Lett. 19, 287 (1994).
    [CrossRef]
  8. C. Dorrer and I. Kang, Opt. Lett. 28, 477 (2003).
    [CrossRef] [PubMed]
  9. A. P. Kovacs, K. Osvay, Z. Bor, and R. Szipocs, Opt. Lett. 20, 788 (1995).
    [CrossRef]
  10. P. Baum, S. Lochbrunner, and E. Riedle, Opt. Lett. 29, 210 (2004).
    [CrossRef] [PubMed]
  11. C. Dorrer, E. M. Kosik, and I. A. Walmsley, Opt. Lett. 27, 548 (2002).
    [CrossRef]
  12. C. Dorrer and I. A. Walmsley, Opt. Lett. 27, 1947 (2002).
    [CrossRef]
  13. S. Akturk, M. Kimmel, P. OShea, and R. Trebino, Opt. Express 11, 491 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]

2004 (1)

2003 (2)

2002 (2)

1999 (1)

D. T. Reid, IEEE J. Quantum Electron. 35, 1584 (1999).
[CrossRef]

1998 (1)

1997 (1)

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

1995 (2)

1994 (1)

1991 (2)

J. L. A. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

V. A. Zubov and T. I. Kuznetsova, Sov. J. Quantum Electron. 21, 1285 (1991).
[CrossRef]

Akturk, S.

Baum, P.

Bor, Z.

Chilla, J. L. A.

J. L. A. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

Chu, K. C.

DeLong, K.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Dienes, A.

Dorrer, C.

Fittinghoff, D.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Grant, R. S.

Heritage, J. P.

Iaconis, C.

Kane, D.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Kang, I.

Kimmel, M.

Kosik, E. M.

Kovacs, A. P.

Krumbugel, M.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Kuznetsova, T. I.

V. A. Zubov and T. I. Kuznetsova, Sov. J. Quantum Electron. 21, 1285 (1991).
[CrossRef]

Liu, K. X.

Lochbrunner, S.

Martinez, O. E.

J. L. A. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

OShea, P.

Osvay, K.

Reid, D. T.

D. T. Reid, IEEE J. Quantum Electron. 35, 1584 (1999).
[CrossRef]

Richman, B.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Riedle, E.

Sullivan, A.

Sweetser, J.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Szipocs, R.

Trebino, R.

S. Akturk, M. Kimmel, P. OShea, and R. Trebino, Opt. Express 11, 491 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Walmsley, I. A.

White, W. E.

Wong, V.

Zubov, V. A.

V. A. Zubov and T. I. Kuznetsova, Sov. J. Quantum Electron. 21, 1285 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for SEA-SPIDER. The unknown pulse, E˜x,ω, and the two chirped ancillary pulses are focused into a nonlinear crystal. The unknown pulse upconverts with two different monochromatic frequencies, resulting in a relative spectral shear Ω between the upconverted replicas. The angle between the two ancillaries at the time of upconversion encodes a tilt between the two sheared pulses, resulting in spatial interference fringes when they are focused into an imaging spectrometer.

Fig. 2
Fig. 2

First step in the SEA-SPIDER inversion algorithm. The 2-D interferogram, S˜x,ω, is 2-D Fourier transformed, and one of the Fourier sidebands is selected for further analysis. This process separates the interference term from the rest of the signal. FFT, fast Fourier transform.

Fig. 3
Fig. 3

(a) SEA-SPIDER interferogram of a spatially chirped pulse and (b) reconstructed fields for two different spatial slices. The spectral density and phase at spatial slice a are given by the solid and dotted curves, respectively, while those for spatial slice b are given by the dashed–dotted and dashed curves, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S˜x,ω=E˜x,ω-ω02+E˜x,ω-ω0-Ω2+2E˜x,ω-ω0E˜x,ω-ω0-Ω×cosϕx,ω-ω0-ϕx,ω-ω0-Ω+Kx,
S˜fx,ω=E˜x,ω-ω0E˜x,ω-ω0-Ω×expiϕx,ω-ω0-iϕx,ω-ω0-Ω×expiKx.

Metrics