Abstract

A new diffraction-based method is proposed and demonstrated for simultaneous shaping of both the phase and amplitude of femtosecond laser pulses by use of a phase-only two-dimensional spatial light modulator. The method suppresses certain types of temporal replica features ordinarily observed in femtosecond pulse shaping owing to imperfections in modulator devices and allows for multiplexed outputs suitable for use in various applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000), and references therein.
    [CrossRef]
  2. M. M. Wefers and K. A. Nelson, Opt. Lett. 20, 1047 (1995).
    [CrossRef]
  3. M. M. Wefers, H. Kawashima, and K. A. Nelson, J. Chem. Phys. 22, 9133 (1995).
  4. N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
    [CrossRef] [PubMed]
  5. M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley, Hoboken, N.J., 2003), and references therein.
  6. H. P. Saradesai, C.-C. Chang, and A. M. Weiner, J. Lightwave Technol. 16, 1953 (1998).
    [CrossRef]
  7. T. Feurer, J. C. Vaughan, R. Koehl, and K. A. Nelson, Opt. Lett. 27, 652 (2002).
    [CrossRef]
  8. J. C. Vaughn, T. Feurer, and K. A. Nelson, J. Opt. Soc. Am. B 19, 2489 (2002).
    [CrossRef]
  9. J. C. Vaughn, T. Feurer, and K. A. Nelson, Opt. Lett. 28, 2408 (2003).
    [CrossRef]
  10. M. A. Dugan, J. X. Tull, and W. S. Warren, J. Opt. Soc. Am. B 14, 2348 (1997).
    [CrossRef]
  11. M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
    [CrossRef]
  12. T. Hornung, J. C. Vaughan, T. Feurer, and K. A. Nelson, Opt. Lett. 29, 2052 (2004).
    [CrossRef] [PubMed]
  13. M. M. Wefers and K. A. Nelson, J. Opt. Soc. B 12, 1343 (1995).
    [CrossRef]
  14. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
    [CrossRef]

2004 (1)

2003 (2)

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

J. C. Vaughn, T. Feurer, and K. A. Nelson, Opt. Lett. 28, 2408 (2003).
[CrossRef]

2002 (3)

2000 (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000), and references therein.
[CrossRef]

1998 (1)

1997 (1)

1995 (3)

M. M. Wefers and K. A. Nelson, Opt. Lett. 20, 1047 (1995).
[CrossRef]

M. M. Wefers, H. Kawashima, and K. A. Nelson, J. Chem. Phys. 22, 9133 (1995).

M. M. Wefers and K. A. Nelson, J. Opt. Soc. B 12, 1343 (1995).
[CrossRef]

1992 (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

Brumer, P.

M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley, Hoboken, N.J., 2003), and references therein.

Buckup, T.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

Chang, C.-C.

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Dugan, M. A.

Feurer, T.

Gehner, A.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

Hacker, M.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

Hornung, T.

Kawashima, H.

M. M. Wefers, H. Kawashima, and K. A. Nelson, J. Chem. Phys. 22, 9133 (1995).

Koehl, R.

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

Motzkus, M.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

Nelson, K. A.

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

Saradesai, H. P.

Sauerbrey, R.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

Shapiro, M.

M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley, Hoboken, N.J., 2003), and references therein.

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Stobrawa, G.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

Tull, J. X.

Vaughan, J. C.

Vaughn, J. C.

Warren, W. S.

Wefers, M. M.

M. M. Wefers and K. A. Nelson, J. Opt. Soc. B 12, 1343 (1995).
[CrossRef]

M. M. Wefers, H. Kawashima, and K. A. Nelson, J. Chem. Phys. 22, 9133 (1995).

M. M. Wefers and K. A. Nelson, Opt. Lett. 20, 1047 (1995).
[CrossRef]

Weiner, A. M.

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000), and references therein.
[CrossRef]

H. P. Saradesai, C.-C. Chang, and A. M. Weiner, J. Lightwave Technol. 16, 1953 (1998).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

Wildenhain, M.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

Appl. Phys. B (1)

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

J. Chem. Phys. (1)

M. M. Wefers, H. Kawashima, and K. A. Nelson, J. Chem. Phys. 22, 9133 (1995).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

J. Opt. Soc. B (1)

M. M. Wefers and K. A. Nelson, J. Opt. Soc. B 12, 1343 (1995).
[CrossRef]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000), and references therein.
[CrossRef]

Other (1)

M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley, Hoboken, N.J., 2003), and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of diffraction-based pulse shaping. A sawtooth phase modulation with period d, amplitude Aν, and phase ϕν is applied by the 2D LCSLM to a given spectral component to control the phase and amplitude of the light diffracted into the first order. A lens with a focal length of f produces at focal plane FP a spatial Fourier transform of the light at the 2D LCSLM. (b) Measured amplitude (dotted curve) of diffracted light as a function of sawtooth amplitude A, which is in good agreement with the expected sinc behavior (solid curve).

Fig. 2
Fig. 2

(a) Intensity cross correlations of phase-related double pulses. (b) Spectral intensity of a double-pulse waveform as the relative phase of the two pulses is scanned.

Fig. 3
Fig. 3

(a) Intensity cross correlation of the waveform resulting from the application of a linear spectral phase with a slope of 2 ps in a conventional (reflective) manner. (b) Spatially resolved intensity cross correlation of a waveform with the same spectral phase modulation as in (a) but generated with the diffraction-based pulse shaping scheme. Modulator replica pulses are displaced in both space and time. (c) Integral of (b) over all positions, including many diffraction orders. (d) Integral of (b) over position in the vicinity of the first-order diffracted light (between the dashed curves).

Fig. 4
Fig. 4

Demonstration of multiplexed phase and amplitude pulse shaping. (a) Angle-resolved intensity cross correlation of four differently shaped waveforms. All but the first-order diffraction was blocked by a pair of razor blades. (b) Separate cross-correlation traces through each of the four shaped waveforms.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φν,y=α12+AνSdϕν,y,
Eνexp-iϕνsincπ-α2Aν,

Metrics