Abstract

A D-type fiber biosensor based on surface-plasmon resonance (SPR) technology and heterodyne interferometry is presented. The sensing device is a single-mode optical fiber in which half the core is polished away and a thin-film layer of gold is deposited. We measure the phase-difference variations instead of the light intensity as in traditional SPR techniques. Therefore the accuracy and resolution of our method are very high. Its sensitivity can reach 2×10-6 refractive-index units. The sensor has some merits, e.g., tunable high sensitivity, small size, lower cost, smaller sample volume, and suitability for in vivo testing. This novel method of a D-type fiber biosensor based on SPR technology and heterodyne interferometry is valuable for chemical, biological, and biochemical sensing, and the novel method of D-type fiber biosensing is a feasible means of study.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
    [CrossRef]
  2. R. C. Jorguenson and S. S. Yee, Sens. Actuators B 12, 213 (1993).
    [CrossRef]
  3. W. V. Sorin and H. Shaw, Opt. Lett. 10, 550 (1985).
    [CrossRef] [PubMed]
  4. A. Díez, M. V. Andrés, and J. L. Cruz, Sens. Actuators B 73, 95 (2001).
    [CrossRef]
  5. M. H. Chiu, S. N. Hsu, and H. Yang, Sens. Actuators B 101, 322 (2004).
    [CrossRef]
  6. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), pp. 10–13.
  7. S. Shen, T. Liu, and J. Guo, Appl. Opt. 37, 1747 (1998).
    [CrossRef]
  8. K. H. Chen, C. C. Hsu, and D. C. Su, Opt. Commun. 209, 167 (2002).
    [CrossRef]
  9. Y. C. Cheng, W. K. Su, and J. H. Liou, Opt. Eng. 39, 311 (2000).
    [CrossRef]
  10. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, U.K., 1980), pp. 48–50.

2004 (1)

M. H. Chiu, S. N. Hsu, and H. Yang, Sens. Actuators B 101, 322 (2004).
[CrossRef]

2002 (1)

K. H. Chen, C. C. Hsu, and D. C. Su, Opt. Commun. 209, 167 (2002).
[CrossRef]

2001 (1)

A. Díez, M. V. Andrés, and J. L. Cruz, Sens. Actuators B 73, 95 (2001).
[CrossRef]

2000 (1)

Y. C. Cheng, W. K. Su, and J. H. Liou, Opt. Eng. 39, 311 (2000).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

1998 (1)

1993 (1)

R. C. Jorguenson and S. S. Yee, Sens. Actuators B 12, 213 (1993).
[CrossRef]

1985 (1)

Andrés, M. V.

A. Díez, M. V. Andrés, and J. L. Cruz, Sens. Actuators B 73, 95 (2001).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, U.K., 1980), pp. 48–50.

Chen, K. H.

K. H. Chen, C. C. Hsu, and D. C. Su, Opt. Commun. 209, 167 (2002).
[CrossRef]

Cheng, Y. C.

Y. C. Cheng, W. K. Su, and J. H. Liou, Opt. Eng. 39, 311 (2000).
[CrossRef]

Chiu, M. H.

M. H. Chiu, S. N. Hsu, and H. Yang, Sens. Actuators B 101, 322 (2004).
[CrossRef]

Cruz, J. L.

A. Díez, M. V. Andrés, and J. L. Cruz, Sens. Actuators B 73, 95 (2001).
[CrossRef]

Díez, A.

A. Díez, M. V. Andrés, and J. L. Cruz, Sens. Actuators B 73, 95 (2001).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Guo, J.

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Hsu, C. C.

K. H. Chen, C. C. Hsu, and D. C. Su, Opt. Commun. 209, 167 (2002).
[CrossRef]

Hsu, S. N.

M. H. Chiu, S. N. Hsu, and H. Yang, Sens. Actuators B 101, 322 (2004).
[CrossRef]

Jorguenson, R. C.

R. C. Jorguenson and S. S. Yee, Sens. Actuators B 12, 213 (1993).
[CrossRef]

Liou, J. H.

Y. C. Cheng, W. K. Su, and J. H. Liou, Opt. Eng. 39, 311 (2000).
[CrossRef]

Liu, T.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), pp. 10–13.

Shaw, H.

Shen, S.

Sorin, W. V.

Su, D. C.

K. H. Chen, C. C. Hsu, and D. C. Su, Opt. Commun. 209, 167 (2002).
[CrossRef]

Su, W. K.

Y. C. Cheng, W. K. Su, and J. H. Liou, Opt. Eng. 39, 311 (2000).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, U.K., 1980), pp. 48–50.

Yang, H.

M. H. Chiu, S. N. Hsu, and H. Yang, Sens. Actuators B 101, 322 (2004).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

R. C. Jorguenson and S. S. Yee, Sens. Actuators B 12, 213 (1993).
[CrossRef]

Appl. Opt. (1)

Opt. Commun. (1)

K. H. Chen, C. C. Hsu, and D. C. Su, Opt. Commun. 209, 167 (2002).
[CrossRef]

Opt. Eng. (1)

Y. C. Cheng, W. K. Su, and J. H. Liou, Opt. Eng. 39, 311 (2000).
[CrossRef]

Opt. Lett. (1)

Sens. Actuators B (4)

A. Díez, M. V. Andrés, and J. L. Cruz, Sens. Actuators B 73, 95 (2001).
[CrossRef]

M. H. Chiu, S. N. Hsu, and H. Yang, Sens. Actuators B 101, 322 (2004).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

R. C. Jorguenson and S. S. Yee, Sens. Actuators B 12, 213 (1993).
[CrossRef]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), pp. 10–13.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, U.K., 1980), pp. 48–50.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Scheme of the sensor (lateral view), (b), heterodyne source coupled in and out of a D-type optical fiber biosensor. FG, function generator.

Fig. 2
Fig. 2

Numerical simulations of the total phase-difference variation ϕ as a function of n3 for different incident angles θ.

Fig. 3
Fig. 3

Numerical simulations of the reflectivity variation as a function of n3 for different incident angles θi.

Fig. 4
Fig. 4

Sensitivity as a function of n3 for different incident angles θi.

Fig. 5
Fig. 5

Experimental and theoretical results for the phase-difference variations versus the refractive indices of alcohol with variable concentrations.

Tables (1)

Tables Icon

Table 1 Refractive Indices of Various Alcohol Concentrations

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

r123t=r12t+r23t expi2kz2d21+r12tr23t expi2kz2d2,
EIt=nj2kzit=pkzit=s,  I=i,j,ij,  i,j=1,2,3.
kzi=k0ni2-n12 sin2 θi0.5,
r123p=r123pexpiϕp,  r123s=r123sexpiϕs,
δi=ϕp-ϕs.
ϕ1,i=miδi,
mi=L2h tan θi.
δi=2 tan-1sin2 θi-nclad/n121/2tan θi sin θi,
ϕ2,i=miδi,
It=limNi=1NIi1+Vi cos2πft+ϕi,
ϕi=miδi,

Metrics