Abstract

The combined effects of bending and elongation on fiber losses as rays propagate along deformed polymer optical fibers (POFs) are investigated. The variations in power attenuation for various curvature radii and elongations are studied. The experimental results indicate that the combination of bending and elongation significantly affects the power loss of POF. From the results an equation is proposed to predict the power losses for different bent radii and elongations. The maximum difference between the proposed equation and the experimental results is less than 5%.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Losada, I. Garcés, J. Mateo, J. Salinas, J. Lou, and J. Zubía, J. Lightwave Technol. 20, 1140 (2002).
    [CrossRef]
  2. F. Mederer, R. Jäger, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Naritomi, and R. Yoshida, IEEE Photon. Technol. Lett. 12, 199 (2000).
    [CrossRef]
  3. M. Naritomi, in Proceedings of the Ninth International Conference on Plastic Optical Fibers and Applications (Boston, Mass., 2000), pp. 8–11.
  4. J. Arrue and J. Zubia, IEE Proc. Optoelectron. 143, 135 (1996).
    [CrossRef]
  5. J. Arrue and J. Zubia, IEE Proc. Optoelectron. 144, 397 (1997).
    [CrossRef]
  6. J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, IEE Proc. Optoelectron. 145, 313 (1998).
    [CrossRef]
  7. G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, Appl. Opt. 42, 997 (2003).
    [CrossRef] [PubMed]
  8. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), Chap. 7.

2003 (1)

2002 (1)

M. A. Losada, I. Garcés, J. Mateo, J. Salinas, J. Lou, and J. Zubía, J. Lightwave Technol. 20, 1140 (2002).
[CrossRef]

2000 (1)

F. Mederer, R. Jäger, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Naritomi, and R. Yoshida, IEEE Photon. Technol. Lett. 12, 199 (2000).
[CrossRef]

1998 (1)

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, IEE Proc. Optoelectron. 145, 313 (1998).
[CrossRef]

1997 (1)

J. Arrue and J. Zubia, IEE Proc. Optoelectron. 144, 397 (1997).
[CrossRef]

1996 (1)

J. Arrue and J. Zubia, IEE Proc. Optoelectron. 143, 135 (1996).
[CrossRef]

Aldabaldetreku, G.

Arrue, J.

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, Appl. Opt. 42, 997 (2003).
[CrossRef] [PubMed]

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, IEE Proc. Optoelectron. 145, 313 (1998).
[CrossRef]

J. Arrue and J. Zubia, IEE Proc. Optoelectron. 144, 397 (1997).
[CrossRef]

J. Arrue and J. Zubia, IEE Proc. Optoelectron. 143, 135 (1996).
[CrossRef]

Durana, G.

Ebeling, K. J.

F. Mederer, R. Jäger, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Naritomi, and R. Yoshida, IEEE Photon. Technol. Lett. 12, 199 (2000).
[CrossRef]

Fuster, G.

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, IEE Proc. Optoelectron. 145, 313 (1998).
[CrossRef]

Garcés, I.

M. A. Losada, I. Garcés, J. Mateo, J. Salinas, J. Lou, and J. Zubía, J. Lightwave Technol. 20, 1140 (2002).
[CrossRef]

Jäger, R.

F. Mederer, R. Jäger, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Naritomi, and R. Yoshida, IEEE Photon. Technol. Lett. 12, 199 (2000).
[CrossRef]

Kalymnios, D.

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, IEE Proc. Optoelectron. 145, 313 (1998).
[CrossRef]

Kicherer, M.

F. Mederer, R. Jäger, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Naritomi, and R. Yoshida, IEEE Photon. Technol. Lett. 12, 199 (2000).
[CrossRef]

Losada, M. A.

M. A. Losada, I. Garcés, J. Mateo, J. Salinas, J. Lou, and J. Zubía, J. Lightwave Technol. 20, 1140 (2002).
[CrossRef]

Lou, J.

M. A. Losada, I. Garcés, J. Mateo, J. Salinas, J. Lou, and J. Zubía, J. Lightwave Technol. 20, 1140 (2002).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), Chap. 7.

Mateo, J.

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, Appl. Opt. 42, 997 (2003).
[CrossRef] [PubMed]

M. A. Losada, I. Garcés, J. Mateo, J. Salinas, J. Lou, and J. Zubía, J. Lightwave Technol. 20, 1140 (2002).
[CrossRef]

Mederer, F.

F. Mederer, R. Jäger, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Naritomi, and R. Yoshida, IEEE Photon. Technol. Lett. 12, 199 (2000).
[CrossRef]

Naritomi, M.

F. Mederer, R. Jäger, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Naritomi, and R. Yoshida, IEEE Photon. Technol. Lett. 12, 199 (2000).
[CrossRef]

M. Naritomi, in Proceedings of the Ninth International Conference on Plastic Optical Fibers and Applications (Boston, Mass., 2000), pp. 8–11.

Salinas, J.

M. A. Losada, I. Garcés, J. Mateo, J. Salinas, J. Lou, and J. Zubía, J. Lightwave Technol. 20, 1140 (2002).
[CrossRef]

Schnitzer, P.

F. Mederer, R. Jäger, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Naritomi, and R. Yoshida, IEEE Photon. Technol. Lett. 12, 199 (2000).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), Chap. 7.

Unold, H.

F. Mederer, R. Jäger, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Naritomi, and R. Yoshida, IEEE Photon. Technol. Lett. 12, 199 (2000).
[CrossRef]

Yoshida, R.

F. Mederer, R. Jäger, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Naritomi, and R. Yoshida, IEEE Photon. Technol. Lett. 12, 199 (2000).
[CrossRef]

Zubia, J.

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, Appl. Opt. 42, 997 (2003).
[CrossRef] [PubMed]

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, IEE Proc. Optoelectron. 145, 313 (1998).
[CrossRef]

J. Arrue and J. Zubia, IEE Proc. Optoelectron. 144, 397 (1997).
[CrossRef]

J. Arrue and J. Zubia, IEE Proc. Optoelectron. 143, 135 (1996).
[CrossRef]

Zubía, J.

M. A. Losada, I. Garcés, J. Mateo, J. Salinas, J. Lou, and J. Zubía, J. Lightwave Technol. 20, 1140 (2002).
[CrossRef]

Appl. Opt. (1)

IEE Proc. Optoelectron. (3)

J. Arrue and J. Zubia, IEE Proc. Optoelectron. 143, 135 (1996).
[CrossRef]

J. Arrue and J. Zubia, IEE Proc. Optoelectron. 144, 397 (1997).
[CrossRef]

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, IEE Proc. Optoelectron. 145, 313 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

F. Mederer, R. Jäger, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Naritomi, and R. Yoshida, IEEE Photon. Technol. Lett. 12, 199 (2000).
[CrossRef]

J. Lightwave Technol. (1)

M. A. Losada, I. Garcés, J. Mateo, J. Salinas, J. Lou, and J. Zubía, J. Lightwave Technol. 20, 1140 (2002).
[CrossRef]

Other (2)

M. Naritomi, in Proceedings of the Ninth International Conference on Plastic Optical Fibers and Applications (Boston, Mass., 2000), pp. 8–11.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup used to measure the attenuation. M, material test machine.

Fig. 2
Fig. 2

Ray path in the deformed POF core for (a) a larger curvature radius and (b) a smaller curvature radius.

Fig. 3
Fig. 3

Effects of curvature radius R on power ratio Pout/Pin for POF subjected to elongation δ varied from 0 to 50 mm.

Fig. 4
Fig. 4

Effect of fiber elongation δ on power ratio Pout/Pin for curvature radius R=5, 10, 15, and 20 mm.

Fig. 5
Fig. 5

Schematic of the plastic deformation of POF during elongation. Solid curves represent the undeformed POF and dashed curves show the deformed core: (a) initial stage and (b) middle stage.

Fig. 6
Fig. 6

Effect of elongation strain δ/l on power ratio Pout/Pin for curvature radius R=50 mm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

αiξ=sin-1RinRin+Dmsin αi0-θn,
αiξ=sin-1RinRin+Dmsin αi0+θn,
θn=cos-1Rout2+Rout2-n22RoutRout.
Trξ=4 cos αiξcos2 αiξ-cos2 αc1/2cos αiξ+cos2 αiξ-cos2 αc1/22.
Poutξ=Pinξ1-Tr,
PoutPinR,δ/l=c×10-a exp-0.18R,
a=-0.1817δl+0.93
c=-0.2206δl+1.

Metrics