Abstract

We have observed the longitudinal pure spatial coherence of a light field in an interference experiment when the length of the temporal coherence is significantly smaller than the length of the longitudinal spatial coherence of the light field. We introduce into consideration new spatial and temporal scales of a light field: the length of the coherent (free) run and the coherent time (the time of life) of a wave train.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Soroko, Holography and Coherent Optics (Nauka, Moscow, 1971).
  2. J. Rosen and A. Yariv, Opt. Commun. 117, 8 (1995).
    [CrossRef]
  3. G. R. Lokshin, A. V. Uchenov, and M. A. Entin, J. Commun. Technol. 45, 384 (2000).
  4. K. Tian and G. Barbastathis, Opt. Lett. 29, 670 (2004).
    [CrossRef] [PubMed]
  5. W. Wang, H. Kozaki, J. Rosen, and M. Takeda, Appl. Opt. 41, 1962 (2002).
    [CrossRef] [PubMed]
  6. M. Gokhler, Z. Duan, J. Rosen, and M. Takeda, Opt. Eng. 42, 830 (2003).
    [CrossRef]
  7. V. P. Ryabukho, D. V. Lyakin, and M. I. Lobachev, Opt. Spectrosc. 97, 299 (2004).
    [CrossRef]
  8. V. Ryabukho, D. Lyakin, and M. I. Lobachev, Opt. Lett. 29, 667 (2004).
    [CrossRef] [PubMed]
  9. V. P. Ryabukho, D. V. Lyakin, and M. I. Lobachev, Tech. Phys. Lett. 30, 64 (2004).
    [CrossRef]
  10. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995).
    [CrossRef]
  11. A. T. Friberg and E. Wolf, Opt. Lett. 20, 623 (1995).
    [CrossRef] [PubMed]
  12. M. A. Alonso, J. Opt. Soc. Am. A 18, 2502 (2001).
    [CrossRef]

2004

K. Tian and G. Barbastathis, Opt. Lett. 29, 670 (2004).
[CrossRef] [PubMed]

V. P. Ryabukho, D. V. Lyakin, and M. I. Lobachev, Opt. Spectrosc. 97, 299 (2004).
[CrossRef]

V. Ryabukho, D. Lyakin, and M. I. Lobachev, Opt. Lett. 29, 667 (2004).
[CrossRef] [PubMed]

V. P. Ryabukho, D. V. Lyakin, and M. I. Lobachev, Tech. Phys. Lett. 30, 64 (2004).
[CrossRef]

2003

M. Gokhler, Z. Duan, J. Rosen, and M. Takeda, Opt. Eng. 42, 830 (2003).
[CrossRef]

2002

2001

2000

G. R. Lokshin, A. V. Uchenov, and M. A. Entin, J. Commun. Technol. 45, 384 (2000).

1995

Alonso, M. A.

Barbastathis, G.

Duan, Z.

M. Gokhler, Z. Duan, J. Rosen, and M. Takeda, Opt. Eng. 42, 830 (2003).
[CrossRef]

Entin, M. A.

G. R. Lokshin, A. V. Uchenov, and M. A. Entin, J. Commun. Technol. 45, 384 (2000).

Friberg, A. T.

Gokhler, M.

M. Gokhler, Z. Duan, J. Rosen, and M. Takeda, Opt. Eng. 42, 830 (2003).
[CrossRef]

Kozaki, H.

Lobachev, M. I.

V. P. Ryabukho, D. V. Lyakin, and M. I. Lobachev, Opt. Spectrosc. 97, 299 (2004).
[CrossRef]

V. Ryabukho, D. Lyakin, and M. I. Lobachev, Opt. Lett. 29, 667 (2004).
[CrossRef] [PubMed]

V. P. Ryabukho, D. V. Lyakin, and M. I. Lobachev, Tech. Phys. Lett. 30, 64 (2004).
[CrossRef]

Lokshin, G. R.

G. R. Lokshin, A. V. Uchenov, and M. A. Entin, J. Commun. Technol. 45, 384 (2000).

Lyakin, D.

Lyakin, D. V.

V. P. Ryabukho, D. V. Lyakin, and M. I. Lobachev, Tech. Phys. Lett. 30, 64 (2004).
[CrossRef]

V. P. Ryabukho, D. V. Lyakin, and M. I. Lobachev, Opt. Spectrosc. 97, 299 (2004).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995).
[CrossRef]

Rosen, J.

M. Gokhler, Z. Duan, J. Rosen, and M. Takeda, Opt. Eng. 42, 830 (2003).
[CrossRef]

W. Wang, H. Kozaki, J. Rosen, and M. Takeda, Appl. Opt. 41, 1962 (2002).
[CrossRef] [PubMed]

J. Rosen and A. Yariv, Opt. Commun. 117, 8 (1995).
[CrossRef]

Ryabukho, V.

Ryabukho, V. P.

V. P. Ryabukho, D. V. Lyakin, and M. I. Lobachev, Tech. Phys. Lett. 30, 64 (2004).
[CrossRef]

V. P. Ryabukho, D. V. Lyakin, and M. I. Lobachev, Opt. Spectrosc. 97, 299 (2004).
[CrossRef]

Soroko, L. M.

L. M. Soroko, Holography and Coherent Optics (Nauka, Moscow, 1971).

Takeda, M.

M. Gokhler, Z. Duan, J. Rosen, and M. Takeda, Opt. Eng. 42, 830 (2003).
[CrossRef]

W. Wang, H. Kozaki, J. Rosen, and M. Takeda, Appl. Opt. 41, 1962 (2002).
[CrossRef] [PubMed]

Tian, K.

Uchenov, A. V.

G. R. Lokshin, A. V. Uchenov, and M. A. Entin, J. Commun. Technol. 45, 384 (2000).

Wang, W.

Wolf, E.

A. T. Friberg and E. Wolf, Opt. Lett. 20, 623 (1995).
[CrossRef] [PubMed]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995).
[CrossRef]

Yariv, A.

J. Rosen and A. Yariv, Opt. Commun. 117, 8 (1995).
[CrossRef]

Appl. Opt.

J. Commun. Technol.

G. R. Lokshin, A. V. Uchenov, and M. A. Entin, J. Commun. Technol. 45, 384 (2000).

J. Opt. Soc. Am. A

Opt. Commun.

J. Rosen and A. Yariv, Opt. Commun. 117, 8 (1995).
[CrossRef]

Opt. Eng.

M. Gokhler, Z. Duan, J. Rosen, and M. Takeda, Opt. Eng. 42, 830 (2003).
[CrossRef]

Opt. Lett.

Opt. Spectrosc.

V. P. Ryabukho, D. V. Lyakin, and M. I. Lobachev, Opt. Spectrosc. 97, 299 (2004).
[CrossRef]

Tech. Phys. Lett.

V. P. Ryabukho, D. V. Lyakin, and M. I. Lobachev, Tech. Phys. Lett. 30, 64 (2004).
[CrossRef]

Other

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995).
[CrossRef]

L. M. Soroko, Holography and Coherent Optics (Nauka, Moscow, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Setup of the scanning disbalanced-arm Michelson interferometer for observation of the longitudinal pure spatial coherence. Abbreviations defined in text.

Fig. 2
Fig. 2

Experimental digital oscillograms of the interference pulses of 1, temporal and 2, longitudinal spatial coherence of light from sources S1 and S2, respectively, registered simultaneously (gray) and for S1 only (black) at various thicknesses of additional optical layer GP with refractive index n1.5: (a) d0, (b) d20 µm, (c) d38 µm, (d) d60 µm, (e) d85 µm.

Fig. 3
Fig. 3

Normalized experimental values of the modulus of the LSC of light from source S1 (circle) and the normalized envelope of the pulse of the LSC of light from source S2 (curve) versus the mutual longitudinal shift Δz of the interfering fields.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ=2dn-1,
Δz2dn-1/n.
ΔzΔz+2ΔzM=2dn2-1/n.
u˜p12ΔzMγ1112ΔzMΔ×γ1212ΔzM±Δzcos2πλ12ΔzM,

Metrics