Abstract

Narrowband pulsed 822 nm signal radiation from an injection-seeded optical parametric oscillator (OPO) system is used to record fluorescence-detected sub-Doppler two-photon excitation (TPE) spectra of atomic cesium. An optical-heterodyne technique is used to monitor the frequency chirp as well as the fluctuating central frequency of successive OPO output pulses, thereby providing a novel way to record sub-Doppler TPE spectra. The measured TPE linewidth approaches the ultimate limit imposed by the Fourier transform of the pulse’s temporal profile, demonstrating the utility of this system for pulsed laser spectroscopy applications that require the highest possible resolution.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. White, Y. He, B. J. Orr, M. Kono, and K. G.H. Baldwin, Opt. Lett. 28, 1248 (2003).
    [CrossRef] [PubMed]
  2. R. T. White, Y. He, B. J. Orr, M. Kono, and K. G.H. Baldwin, J. Opt. Soc. Am. B 21, 1577 (2004).
    [CrossRef]
  3. R. T. White, Y. He, B. J. Orr, M. Kono, and K. G.H. Baldwin, J. Opt. Soc. Am. B 21, 1586 (2004).
    [CrossRef]
  4. R. T. White, Y. He, B. J. Orr, M. Kono, and K. G.H. Baldwin, Opt. Express 12, 5655 (2004).
    [CrossRef] [PubMed]
  5. C. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
    [CrossRef]
  6. K. Sasaki, K. Sugiyama, V. Babychev, and A. Onae, Jpn. J. Appl. Phys. Part 1 39, 5310 (2000).
    [CrossRef]
  7. C. Wieman and T. W. Hänsch, Phys. Rev. A 22, 192 (1980).
    [CrossRef]
  8. D. S. Elliott, M. W. Hamilton, K. Arnett, and S. J. Smith, Phys. Rev. A 32, 887 (1985).
    [CrossRef] [PubMed]

2004 (3)

2003 (1)

2000 (1)

K. Sasaki, K. Sugiyama, V. Babychev, and A. Onae, Jpn. J. Appl. Phys. Part 1 39, 5310 (2000).
[CrossRef]

1999 (1)

C. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[CrossRef]

1985 (1)

D. S. Elliott, M. W. Hamilton, K. Arnett, and S. J. Smith, Phys. Rev. A 32, 887 (1985).
[CrossRef] [PubMed]

1980 (1)

C. Wieman and T. W. Hänsch, Phys. Rev. A 22, 192 (1980).
[CrossRef]

Arnett, K.

D. S. Elliott, M. W. Hamilton, K. Arnett, and S. J. Smith, Phys. Rev. A 32, 887 (1985).
[CrossRef] [PubMed]

Babychev, V.

K. Sasaki, K. Sugiyama, V. Babychev, and A. Onae, Jpn. J. Appl. Phys. Part 1 39, 5310 (2000).
[CrossRef]

Baldwin, K. G.H.

Biraben, F.

C. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[CrossRef]

Elliott, D. S.

D. S. Elliott, M. W. Hamilton, K. Arnett, and S. J. Smith, Phys. Rev. A 32, 887 (1985).
[CrossRef] [PubMed]

Hagel, C.

C. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[CrossRef]

Hamilton, M. W.

D. S. Elliott, M. W. Hamilton, K. Arnett, and S. J. Smith, Phys. Rev. A 32, 887 (1985).
[CrossRef] [PubMed]

Hänsch, T. W.

C. Wieman and T. W. Hänsch, Phys. Rev. A 22, 192 (1980).
[CrossRef]

He, Y.

Jozefowski, L.

C. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[CrossRef]

Kono, M.

Nesi, C.

C. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[CrossRef]

Nez, F.

C. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[CrossRef]

Onae, A.

K. Sasaki, K. Sugiyama, V. Babychev, and A. Onae, Jpn. J. Appl. Phys. Part 1 39, 5310 (2000).
[CrossRef]

Orr, B. J.

Sasaki, K.

K. Sasaki, K. Sugiyama, V. Babychev, and A. Onae, Jpn. J. Appl. Phys. Part 1 39, 5310 (2000).
[CrossRef]

Schwob, C.

C. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[CrossRef]

Smith, S. J.

D. S. Elliott, M. W. Hamilton, K. Arnett, and S. J. Smith, Phys. Rev. A 32, 887 (1985).
[CrossRef] [PubMed]

Sugiyama, K.

K. Sasaki, K. Sugiyama, V. Babychev, and A. Onae, Jpn. J. Appl. Phys. Part 1 39, 5310 (2000).
[CrossRef]

White, R. T.

Wieman, C.

C. Wieman and T. W. Hänsch, Phys. Rev. A 22, 192 (1980).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. Part 1 (1)

K. Sasaki, K. Sugiyama, V. Babychev, and A. Onae, Jpn. J. Appl. Phys. Part 1 39, 5310 (2000).
[CrossRef]

Opt. Commun. (1)

C. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (2)

C. Wieman and T. W. Hänsch, Phys. Rev. A 22, 192 (1980).
[CrossRef]

D. S. Elliott, M. W. Hamilton, K. Arnett, and S. J. Smith, Phys. Rev. A 32, 887 (1985).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Cs TPE fluorescence as a function of OHD-determined central frequency with double-Gaussian fit, (b) histogram of the number of OPO shots recorded with a Lorentzian fit, (c) total linear frequency chirp between FWHM temporal power-profile limits.

Fig. 2
Fig. 2

(a) Reconstructed averaged-power, zero-chirp temporal profiles for an OPO alone (solid curve), for OPA/2 (short-dashed curve), and at full OPA power (long dashes); (b) calculated FT-limited TPE power spectra from (a), with peaks normalized to unity (see text).

Fig. 3
Fig. 3

Comparison of observed and calculated time–bandwidth products ( Δ t 2 Δ ν ) plotted as a function of the FWHM Δ t 2 of the square of the temporal power profile (as appropriate for TPE). Open symbols, FWHM Δ ν = 2 Δ ν b of the Cs TPE linewidths; filled symbols, Δ ν = FWHM of the FT-limited TPE power spectra as calculated, e.g., in Fig. 2(b). Triangles, OPO only (varying chirp); squares, OPA/2 (zero chirp); circles, full OPA (varying chirp). Also shown are the idealized FT limits for Gaussian (short dashes) and rectangular (long dashes) temporal power profiles.

Metrics