Abstract

Intracavity laser absorption spectroscopy (ICLAS) with an evacuated Cr2+:ZnSe laser is performed with a high-resolution time-resolved Fourier transform interferometer with a minimum detectable absorption coefficient equal to 4×109cm1Hz12 in the 2.5μm region. This represents the extreme limit currently reached in the infrared by ICLAS with Doppler-limited resolution. The broad gain band of the crystal allows a spectral coverage at most equal to 125nm, wide enough to see entire vibration bands. Weak CO2 bands observed up to now only in the Venusian atmosphere are recorded for the first time, to our knowledge, in a laboratory. An H2O detection limit down to 0.9 parts per billion by volume is also demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nägele and M. W. Sigrist, Appl. Phys. B 70, 895 (2000).
    [CrossRef]
  2. J. Ng, A. H. Kung, A. Miklos, and P. Hess, Opt. Lett. 29, 1206 (2004).
    [CrossRef] [PubMed]
  3. G. von Basum, D. Halmer, P. Hering, M. Mürtz, S. Schiller, F. Müller, A. Popp, and F. Kühnemann, Opt. Lett. 29, 797 (2004).
    [CrossRef] [PubMed]
  4. V. M. Baev, T. Latz, and P. E. Toschek, Appl. Phys. B 69, 171 (1999).
    [CrossRef]
  5. V. M. Baev, V. P. Dubov, A. N. Kireev, E. A. Sviridenkov, D. D. Toptygin, and O. I. Yushchuk, Sov. J. Quantum Electron. 16, 1121 (1986).
    [CrossRef]
  6. I. T. Sorokina, Opt. Mater. 26, 395 (2004).
    [CrossRef]
  7. V. A. Akimov, V. I. Kozlovsky, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, Quantum Electron. 34, 185 (2004).
    [CrossRef]
  8. N. Picqué and G. Guelachvili, Appl. Opt. 39, 3984 (2000).
    [CrossRef]
  9. P. Connes and G. Michel, Astrophys. J. Lett. 190, L29 (1974).
    [CrossRef]
  10. E. Sorokin and I. T. Sorokina, Appl. Phys. Lett. 80, 3289 (2002).
    [CrossRef]
  11. HITRAN 2004 spectral database, http://www.hitran.com.

2004 (4)

J. Ng, A. H. Kung, A. Miklos, and P. Hess, Opt. Lett. 29, 1206 (2004).
[CrossRef] [PubMed]

G. von Basum, D. Halmer, P. Hering, M. Mürtz, S. Schiller, F. Müller, A. Popp, and F. Kühnemann, Opt. Lett. 29, 797 (2004).
[CrossRef] [PubMed]

I. T. Sorokina, Opt. Mater. 26, 395 (2004).
[CrossRef]

V. A. Akimov, V. I. Kozlovsky, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, Quantum Electron. 34, 185 (2004).
[CrossRef]

2002 (1)

E. Sorokin and I. T. Sorokina, Appl. Phys. Lett. 80, 3289 (2002).
[CrossRef]

2000 (2)

M. Nägele and M. W. Sigrist, Appl. Phys. B 70, 895 (2000).
[CrossRef]

N. Picqué and G. Guelachvili, Appl. Opt. 39, 3984 (2000).
[CrossRef]

1999 (1)

V. M. Baev, T. Latz, and P. E. Toschek, Appl. Phys. B 69, 171 (1999).
[CrossRef]

1986 (1)

V. M. Baev, V. P. Dubov, A. N. Kireev, E. A. Sviridenkov, D. D. Toptygin, and O. I. Yushchuk, Sov. J. Quantum Electron. 16, 1121 (1986).
[CrossRef]

1974 (1)

P. Connes and G. Michel, Astrophys. J. Lett. 190, L29 (1974).
[CrossRef]

Akimov, V. A.

V. A. Akimov, V. I. Kozlovsky, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, Quantum Electron. 34, 185 (2004).
[CrossRef]

Baev, V. M.

V. M. Baev, T. Latz, and P. E. Toschek, Appl. Phys. B 69, 171 (1999).
[CrossRef]

V. M. Baev, V. P. Dubov, A. N. Kireev, E. A. Sviridenkov, D. D. Toptygin, and O. I. Yushchuk, Sov. J. Quantum Electron. 16, 1121 (1986).
[CrossRef]

Connes, P.

P. Connes and G. Michel, Astrophys. J. Lett. 190, L29 (1974).
[CrossRef]

Dubov, V. P.

V. M. Baev, V. P. Dubov, A. N. Kireev, E. A. Sviridenkov, D. D. Toptygin, and O. I. Yushchuk, Sov. J. Quantum Electron. 16, 1121 (1986).
[CrossRef]

Frolov, M. P.

V. A. Akimov, V. I. Kozlovsky, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, Quantum Electron. 34, 185 (2004).
[CrossRef]

Guelachvili, G.

Halmer, D.

Hering, P.

Hess, P.

Kireev, A. N.

V. M. Baev, V. P. Dubov, A. N. Kireev, E. A. Sviridenkov, D. D. Toptygin, and O. I. Yushchuk, Sov. J. Quantum Electron. 16, 1121 (1986).
[CrossRef]

Korostelin, Yu. V.

V. A. Akimov, V. I. Kozlovsky, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, Quantum Electron. 34, 185 (2004).
[CrossRef]

Kozlovsky, V. I.

V. A. Akimov, V. I. Kozlovsky, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, Quantum Electron. 34, 185 (2004).
[CrossRef]

Kühnemann, F.

Kung, A. H.

Landman, A. I.

V. A. Akimov, V. I. Kozlovsky, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, Quantum Electron. 34, 185 (2004).
[CrossRef]

Latz, T.

V. M. Baev, T. Latz, and P. E. Toschek, Appl. Phys. B 69, 171 (1999).
[CrossRef]

Michel, G.

P. Connes and G. Michel, Astrophys. J. Lett. 190, L29 (1974).
[CrossRef]

Miklos, A.

Müller, F.

Mürtz, M.

Nägele, M.

M. Nägele and M. W. Sigrist, Appl. Phys. B 70, 895 (2000).
[CrossRef]

Ng, J.

Picqué, N.

Podmar’kov, Yu. P.

V. A. Akimov, V. I. Kozlovsky, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, Quantum Electron. 34, 185 (2004).
[CrossRef]

Popp, A.

Schiller, S.

Sigrist, M. W.

M. Nägele and M. W. Sigrist, Appl. Phys. B 70, 895 (2000).
[CrossRef]

Sorokin, E.

E. Sorokin and I. T. Sorokina, Appl. Phys. Lett. 80, 3289 (2002).
[CrossRef]

Sorokina, I. T.

I. T. Sorokina, Opt. Mater. 26, 395 (2004).
[CrossRef]

E. Sorokin and I. T. Sorokina, Appl. Phys. Lett. 80, 3289 (2002).
[CrossRef]

Sviridenkov, E. A.

V. M. Baev, V. P. Dubov, A. N. Kireev, E. A. Sviridenkov, D. D. Toptygin, and O. I. Yushchuk, Sov. J. Quantum Electron. 16, 1121 (1986).
[CrossRef]

Toptygin, D. D.

V. M. Baev, V. P. Dubov, A. N. Kireev, E. A. Sviridenkov, D. D. Toptygin, and O. I. Yushchuk, Sov. J. Quantum Electron. 16, 1121 (1986).
[CrossRef]

Toschek, P. E.

V. M. Baev, T. Latz, and P. E. Toschek, Appl. Phys. B 69, 171 (1999).
[CrossRef]

von Basum, G.

Yushchuk, O. I.

V. M. Baev, V. P. Dubov, A. N. Kireev, E. A. Sviridenkov, D. D. Toptygin, and O. I. Yushchuk, Sov. J. Quantum Electron. 16, 1121 (1986).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

M. Nägele and M. W. Sigrist, Appl. Phys. B 70, 895 (2000).
[CrossRef]

V. M. Baev, T. Latz, and P. E. Toschek, Appl. Phys. B 69, 171 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

E. Sorokin and I. T. Sorokina, Appl. Phys. Lett. 80, 3289 (2002).
[CrossRef]

Astrophys. J. Lett. (1)

P. Connes and G. Michel, Astrophys. J. Lett. 190, L29 (1974).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (1)

I. T. Sorokina, Opt. Mater. 26, 395 (2004).
[CrossRef]

Quantum Electron. (1)

V. A. Akimov, V. I. Kozlovsky, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, Quantum Electron. 34, 185 (2004).
[CrossRef]

Sov. J. Quantum Electron. (1)

V. M. Baev, V. P. Dubov, A. N. Kireev, E. A. Sviridenkov, D. D. Toptygin, and O. I. Yushchuk, Sov. J. Quantum Electron. 16, 1121 (1986).
[CrossRef]

Other (1)

HITRAN 2004 spectral database, http://www.hitran.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the TRFT–ICLAS experiment. The dashed rectangle represents the vacuum chamber. The signal of the total intensity variation of the laser beam after the output coupler (OC) is also shown. AOM is the acousto-optic modulator.

Fig. 2
Fig. 2

C O 2 time-resolved spectrum made of 64 time components. Two consecutive components are 0.32 μ s from each other. This corresponds to a 96 m increase of the equivalent absorbing path L. The upper right-hand enclosure gives the total laser intensity versus time. The cavity buildup time is 8.1 μ s and the relaxation oscillation period is 3.6 μ s .

Fig. 3
Fig. 3

Restricted portion of two components of the time-resolved spectrum shown in Fig. 2. Line profiles are Doppler limited. Equivalent absorbing path values L are, respectively, 2.5 and 4.6 km . The present spectra had not been recorded previously under laboratory conditions and could only be observed in the atmosphere of Venus[9] made of 96.5% C O 2 .

Metrics