Abstract

We observed parametric-generation efficiency of 1.61% from 1064 to 1071nm and at 162μm in a 0.5mm thick, 45mm long z-cut congruent lithium niobate waveguide with a pump energy of 2.2mJ and a pump pulse width of 5.8ns. We also measured an ultralow-threshold intensity of 70MWcm2 for a 1064nm pumped parametric oscillator resonating at 1071nm and emitting at 162μm with a 1mm thick, 45mm long lithium niobate waveguide.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Colson, Nucl. Inst. Methods A 429, 37 (1999).
    [CrossRef]
  2. Q. Hu, presented at the Conference on Lasers and Electro-optics, Baltimore, Md., May 24–26, 2005, paper CtuM3.
  3. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, Appl. Phys. Lett. 26, 418 (1975).
    [CrossRef]
  4. K. Kawase, J. Shikata, and H. Ito, J. Phys. D 35, R1 (2002).
    [CrossRef]
  5. Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, Appl. Phys. Lett. 81, 3323 (2002).
    [CrossRef]
  6. M. Bass, J. M. Enoch, E. W. Van Stryland, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 2001), Vol. 4, p. 22.2.
  7. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), p. 251.

2002 (2)

K. Kawase, J. Shikata, and H. Ito, J. Phys. D 35, R1 (2002).
[CrossRef]

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, Appl. Phys. Lett. 81, 3323 (2002).
[CrossRef]

1999 (1)

W. B. Colson, Nucl. Inst. Methods A 429, 37 (1999).
[CrossRef]

1975 (1)

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, Appl. Phys. Lett. 26, 418 (1975).
[CrossRef]

Bass, M.

M. Bass, J. M. Enoch, E. W. Van Stryland, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 2001), Vol. 4, p. 22.2.

Colson, W. B.

W. B. Colson, Nucl. Inst. Methods A 429, 37 (1999).
[CrossRef]

Enoch, J. M.

M. Bass, J. M. Enoch, E. W. Van Stryland, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 2001), Vol. 4, p. 22.2.

Fleming, R. N.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, Appl. Phys. Lett. 26, 418 (1975).
[CrossRef]

Hu, Q.

Q. Hu, presented at the Conference on Lasers and Electro-optics, Baltimore, Md., May 24–26, 2005, paper CtuM3.

Ito, H.

K. Kawase, J. Shikata, and H. Ito, J. Phys. D 35, R1 (2002).
[CrossRef]

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, Appl. Phys. Lett. 81, 3323 (2002).
[CrossRef]

Kawase, K.

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, Appl. Phys. Lett. 81, 3323 (2002).
[CrossRef]

K. Kawase, J. Shikata, and H. Ito, J. Phys. D 35, R1 (2002).
[CrossRef]

Pantell, R. H.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, Appl. Phys. Lett. 26, 418 (1975).
[CrossRef]

Piestrup, M. A.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, Appl. Phys. Lett. 26, 418 (1975).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), p. 251.

Sasaki, Y.

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, Appl. Phys. Lett. 81, 3323 (2002).
[CrossRef]

Shikata, J.

K. Kawase, J. Shikata, and H. Ito, J. Phys. D 35, R1 (2002).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), p. 251.

Van Stryland, E. W.

M. Bass, J. M. Enoch, E. W. Van Stryland, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 2001), Vol. 4, p. 22.2.

Wolfe, W. L.

M. Bass, J. M. Enoch, E. W. Van Stryland, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 2001), Vol. 4, p. 22.2.

Yuri, A.

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, Appl. Phys. Lett. 81, 3323 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, Appl. Phys. Lett. 26, 418 (1975).
[CrossRef]

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, Appl. Phys. Lett. 81, 3323 (2002).
[CrossRef]

J. Phys. D (1)

K. Kawase, J. Shikata, and H. Ito, J. Phys. D 35, R1 (2002).
[CrossRef]

Nucl. Inst. Methods A (1)

W. B. Colson, Nucl. Inst. Methods A 429, 37 (1999).
[CrossRef]

Other (3)

Q. Hu, presented at the Conference on Lasers and Electro-optics, Baltimore, Md., May 24–26, 2005, paper CtuM3.

M. Bass, J. M. Enoch, E. W. Van Stryland, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 2001), Vol. 4, p. 22.2.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), p. 251.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the waveguide TPO and TPG experiments. The TPO and TPG experiments were performed with and without the 1071 nm high reflectors, respectively.

Fig. 2
Fig. 2

Signal wavelength versus the pump-beam position relative to the waveguide-gap center in the TPG experiment. A positive Δ z denotes the vertical displacement of the pump beam above the gap center. The 23 GHz frequency shift shown in the plot corresponds to the frequency spacing between the TM 0 and the TM 9 modes for THz waves in the waveguide.

Fig. 3
Fig. 3

Intracavity signal energy versus pump energy of the waveguide THz parametric oscillator using a 1 mm thick, 45 mm long Li Nb O 3 slab waveguide. The pump threshold at 1064 nm is as low as 70 MW cm 2 .

Fig. 4
Fig. 4

THz-wave intensity transmitted through a scanning GaAs etalon as a function of the etalon gap. A THz wavelength of 162 μ m can be determined from the periodicity of the fitting curve.

Tables (1)

Tables Icon

Table 1 TPG Signal-Wave Output Characteristics from 45 mm Long z-Cut Li Nb O 3 Slab Waveguides a

Metrics