Abstract

We report the experimental observation of the elliptically polarized fundamental vector soliton of isotropic Kerr media and its unique polarization evolution. This was achieved in the spatial domain in a nonbirefringent CS2 planar waveguide.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Maker, R. Terhune, and C. Savage, Phys. Rev. Lett. 12, 507 (1964).
    [CrossRef]
  2. H. Winful, Opt. Lett. 11, 33 (1986).
    [CrossRef]
  3. G. Gregori and S. Wabnitz, Phys. Rev. Lett. 56, 600 (1986).
    [CrossRef] [PubMed]
  4. B. Malomed, Phys. Rev. A 43, 410 (1991).
    [CrossRef] [PubMed]
  5. N. Akhmediev, A. Buryak, and J. Soto-Crespo, Opt. Commun. 112, 278 (1994).
    [CrossRef]
  6. Y. Barad and Y. Silberberg, Phys. Rev. Lett. 78, 3290 (1997).
    [CrossRef]
  7. D. Christodoulides and R. Joseph, Opt. Lett. 13, 53 (1988).
    [CrossRef] [PubMed]
  8. M. Tratnik and J. Sipe, Phys. Rev. A 38, 2011 (1988).
    [CrossRef] [PubMed]
  9. M. Haelterman and A. Sheppard, Phys. Lett. A 194, 191 (1994).
    [CrossRef]
  10. C. Cambournac, T. Sylvestre, H. Maillotte, B. Vanderlinden, P. Kockaert, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 89, 083901 (2002).
    [CrossRef]
  11. C. Cambournac, H. Maillotte, E. Lantz, J. Dudley, and M. Chauvet, J. Opt. Soc. Am. B 19, 574 (2002).
    [CrossRef]
  12. M. Delqué, M. Chauvet, H. Maillotte, and T. Sylvestre, Opt. Commun. 249, 285 (2005).
    [CrossRef]

2005 (1)

M. Delqué, M. Chauvet, H. Maillotte, and T. Sylvestre, Opt. Commun. 249, 285 (2005).
[CrossRef]

2002 (2)

C. Cambournac, T. Sylvestre, H. Maillotte, B. Vanderlinden, P. Kockaert, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 89, 083901 (2002).
[CrossRef]

C. Cambournac, H. Maillotte, E. Lantz, J. Dudley, and M. Chauvet, J. Opt. Soc. Am. B 19, 574 (2002).
[CrossRef]

1997 (1)

Y. Barad and Y. Silberberg, Phys. Rev. Lett. 78, 3290 (1997).
[CrossRef]

1994 (2)

N. Akhmediev, A. Buryak, and J. Soto-Crespo, Opt. Commun. 112, 278 (1994).
[CrossRef]

M. Haelterman and A. Sheppard, Phys. Lett. A 194, 191 (1994).
[CrossRef]

1991 (1)

B. Malomed, Phys. Rev. A 43, 410 (1991).
[CrossRef] [PubMed]

1988 (2)

1986 (2)

H. Winful, Opt. Lett. 11, 33 (1986).
[CrossRef]

G. Gregori and S. Wabnitz, Phys. Rev. Lett. 56, 600 (1986).
[CrossRef] [PubMed]

1964 (1)

P. Maker, R. Terhune, and C. Savage, Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Akhmediev, N.

N. Akhmediev, A. Buryak, and J. Soto-Crespo, Opt. Commun. 112, 278 (1994).
[CrossRef]

Barad, Y.

Y. Barad and Y. Silberberg, Phys. Rev. Lett. 78, 3290 (1997).
[CrossRef]

Buryak, A.

N. Akhmediev, A. Buryak, and J. Soto-Crespo, Opt. Commun. 112, 278 (1994).
[CrossRef]

Cambournac, C.

C. Cambournac, T. Sylvestre, H. Maillotte, B. Vanderlinden, P. Kockaert, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 89, 083901 (2002).
[CrossRef]

C. Cambournac, H. Maillotte, E. Lantz, J. Dudley, and M. Chauvet, J. Opt. Soc. Am. B 19, 574 (2002).
[CrossRef]

Chauvet, M.

M. Delqué, M. Chauvet, H. Maillotte, and T. Sylvestre, Opt. Commun. 249, 285 (2005).
[CrossRef]

C. Cambournac, H. Maillotte, E. Lantz, J. Dudley, and M. Chauvet, J. Opt. Soc. Am. B 19, 574 (2002).
[CrossRef]

Christodoulides, D.

Delqué, M.

M. Delqué, M. Chauvet, H. Maillotte, and T. Sylvestre, Opt. Commun. 249, 285 (2005).
[CrossRef]

Dudley, J.

Emplit, P.

C. Cambournac, T. Sylvestre, H. Maillotte, B. Vanderlinden, P. Kockaert, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 89, 083901 (2002).
[CrossRef]

Gregori, G.

G. Gregori and S. Wabnitz, Phys. Rev. Lett. 56, 600 (1986).
[CrossRef] [PubMed]

Haelterman, M.

C. Cambournac, T. Sylvestre, H. Maillotte, B. Vanderlinden, P. Kockaert, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 89, 083901 (2002).
[CrossRef]

M. Haelterman and A. Sheppard, Phys. Lett. A 194, 191 (1994).
[CrossRef]

Joseph, R.

Kockaert, P.

C. Cambournac, T. Sylvestre, H. Maillotte, B. Vanderlinden, P. Kockaert, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 89, 083901 (2002).
[CrossRef]

Lantz, E.

Maillotte, H.

M. Delqué, M. Chauvet, H. Maillotte, and T. Sylvestre, Opt. Commun. 249, 285 (2005).
[CrossRef]

C. Cambournac, H. Maillotte, E. Lantz, J. Dudley, and M. Chauvet, J. Opt. Soc. Am. B 19, 574 (2002).
[CrossRef]

C. Cambournac, T. Sylvestre, H. Maillotte, B. Vanderlinden, P. Kockaert, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 89, 083901 (2002).
[CrossRef]

Maker, P.

P. Maker, R. Terhune, and C. Savage, Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Malomed, B.

B. Malomed, Phys. Rev. A 43, 410 (1991).
[CrossRef] [PubMed]

Savage, C.

P. Maker, R. Terhune, and C. Savage, Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Sheppard, A.

M. Haelterman and A. Sheppard, Phys. Lett. A 194, 191 (1994).
[CrossRef]

Silberberg, Y.

Y. Barad and Y. Silberberg, Phys. Rev. Lett. 78, 3290 (1997).
[CrossRef]

Sipe, J.

M. Tratnik and J. Sipe, Phys. Rev. A 38, 2011 (1988).
[CrossRef] [PubMed]

Soto-Crespo, J.

N. Akhmediev, A. Buryak, and J. Soto-Crespo, Opt. Commun. 112, 278 (1994).
[CrossRef]

Sylvestre, T.

M. Delqué, M. Chauvet, H. Maillotte, and T. Sylvestre, Opt. Commun. 249, 285 (2005).
[CrossRef]

C. Cambournac, T. Sylvestre, H. Maillotte, B. Vanderlinden, P. Kockaert, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 89, 083901 (2002).
[CrossRef]

Terhune, R.

P. Maker, R. Terhune, and C. Savage, Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Tratnik, M.

M. Tratnik and J. Sipe, Phys. Rev. A 38, 2011 (1988).
[CrossRef] [PubMed]

Vanderlinden, B.

C. Cambournac, T. Sylvestre, H. Maillotte, B. Vanderlinden, P. Kockaert, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 89, 083901 (2002).
[CrossRef]

Wabnitz, S.

G. Gregori and S. Wabnitz, Phys. Rev. Lett. 56, 600 (1986).
[CrossRef] [PubMed]

Winful, H.

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

M. Delqué, M. Chauvet, H. Maillotte, and T. Sylvestre, Opt. Commun. 249, 285 (2005).
[CrossRef]

N. Akhmediev, A. Buryak, and J. Soto-Crespo, Opt. Commun. 112, 278 (1994).
[CrossRef]

Opt. Lett. (2)

Phys. Lett. A (1)

M. Haelterman and A. Sheppard, Phys. Lett. A 194, 191 (1994).
[CrossRef]

Phys. Rev. A (2)

B. Malomed, Phys. Rev. A 43, 410 (1991).
[CrossRef] [PubMed]

M. Tratnik and J. Sipe, Phys. Rev. A 38, 2011 (1988).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

Y. Barad and Y. Silberberg, Phys. Rev. Lett. 78, 3290 (1997).
[CrossRef]

P. Maker, R. Terhune, and C. Savage, Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

G. Gregori and S. Wabnitz, Phys. Rev. Lett. 56, 600 (1986).
[CrossRef] [PubMed]

C. Cambournac, T. Sylvestre, H. Maillotte, B. Vanderlinden, P. Kockaert, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 89, 083901 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Experimental results. (a), (b), (c) E x (solid curves) and E y (dashed curves), intensity profiles of, respectively, the input beam (FWHM, 49 μ m ), the output beam at low power (FWHM, 100 μ m ), and the output beam in the soliton regime (FWHM, 51 μ m ). (d), (e), (f) Intensity profiles for left-handed U (solid curves) and right-handed V (dashed curves) circular polarization and ellipticity factor q (dotted curve). Note that in the soliton regime FWHM ( U ) = 53 μ m is different from FWHM ( V ) = 45 μ m .

Fig. 3
Fig. 3

Theoretical results. (a), (b), (c) E x (solid curves) and E y (dashed curves), intensity profiles for, respectively, the input beam (FWHM, 49 μ m ), the output beam at low power (FWHM, 100 μ m ), and the output beam in the soliton regime (FWHM, 49 μ m ). (d), (e), (f) Corresponding U (solid curves), V (dashed curves), and q (dotted curves) profiles. Note that in the soliton regime FWHM ( U ) = 53 μ m is different from FWHM ( V ) = 49 μ m . Parameters are k = 1.94 × 10 7 m 1 , γ = 4.1 × 10 11 m W 1 , and maximum input intensity I = 4.5 × 10 11 W m 2 .

Fig. 4
Fig. 4

Contour plots showing the evolution of (a) the diffracting beam, (b) the vector soliton, and (c) ellipticity factor q in the soliton regime. The dashed lines correspond to the experiment and simulation of Figs. 2, 3, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U z = i 2 k 2 U x 2 + i γ [ ( 1 B ) U 2 + ( 1 + B ) V 2 ] U ,
V z = i 2 k 2 V x 2 + i γ [ ( 1 B ) V 2 + ( 1 + B ) U 2 ] V .

Metrics