Abstract

We exploit both the high nonlinearity and the holey structure of microstructured fibers to combine a broadband light source and a gas cell in a single microstructured fiber. A broadband supercontinuum is formed by launching nanosecond pulses from a compact, Q-switched Nd:YAG laser into a microstructured fiber filled with acetylene. This continuum is self-referenced to the acetylene lines in the 1500nm region. The performance of different index-guiding narrow-core microstructured fibers as nonlinear and host media is evaluated. The concept offers many possibilities and can be applied to various gases absorbing at different wavelengths.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  2. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
    [CrossRef]
  3. J. M. Fini, Meas. Sci. Technol. 15, 1120 (2004).
    [CrossRef]
  4. Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, Opt. Eng. 41, 8 (2002).
    [CrossRef]
  5. K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, J. Opt. Soc. Am. B 13, 2708 (1996).
    [CrossRef]
  6. K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
    [CrossRef]
  7. D. Yevick and B. Hermansson, IEEE J. Quantum Electron. 26, 109 (1990).
    [CrossRef]
  8. E. A. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, J. Opt. Soc. Am. B 8, 1626 (1991) and references therein.
    [CrossRef]

2004 (1)

J. M. Fini, Meas. Sci. Technol. 15, 1120 (2004).
[CrossRef]

2002 (1)

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, Opt. Eng. 41, 8 (2002).
[CrossRef]

2001 (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

2000 (1)

1996 (1)

1991 (1)

1990 (1)

D. Yevick and B. Hermansson, IEEE J. Quantum Electron. 26, 109 (1990).
[CrossRef]

1989 (1)

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

Awaji, Y.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

Blow, K. J.

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

de Labachelerie, M.

Dianov, E. M.

Fini, J. M.

J. M. Fini, Meas. Sci. Technol. 15, 1120 (2004).
[CrossRef]

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

Golovchenko, E. A.

Hermansson, B.

D. Yevick and B. Hermansson, IEEE J. Quantum Electron. 26, 109 (1990).
[CrossRef]

Ho, H. L.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, Opt. Eng. 41, 8 (2002).
[CrossRef]

Hoo, Y. L.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, Opt. Eng. 41, 8 (2002).
[CrossRef]

Jin, W.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, Opt. Eng. 41, 8 (2002).
[CrossRef]

Kourogi, M.

Mamyshev, P. V.

Monro, T. M.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

Nakagawa, K.

Pilipetskii, A. N.

Ranka, J. K.

Richardson, D. J.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

Stentz, A. J.

Wang, D. N.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, Opt. Eng. 41, 8 (2002).
[CrossRef]

Windeler, R. S.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, Opt. Eng. 41, 8 (2002).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
[CrossRef]

Wood, D.

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

Yevick, D.

D. Yevick and B. Hermansson, IEEE J. Quantum Electron. 26, 109 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

D. Yevick and B. Hermansson, IEEE J. Quantum Electron. 26, 109 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (2)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

J. M. Fini, Meas. Sci. Technol. 15, 1120 (2004).
[CrossRef]

Opt. Eng. (1)

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, Opt. Eng. 41, 8 (2002).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. SMF, single-mode fiber; MMF, multimode fiber; OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

(a) Dispersion profiles for MF-2.0 (dashed curve) and MF-3.2 (solid curve). Inset, microscope images of the fiber cross sections. (b) Percentage of the modal power located in the holes for MF-2.0 (dashed curve) and MF-3.2 (solid curve). Inset, simulated mode field at 1500 nm .

Fig. 3
Fig. 3

SC generated in (a) MF-2.0 and (b) MF-3.2 filled with acetylene. Inset, SC without acetylene.

Fig. 4
Fig. 4

Numerical simulations of the (a) spectrum and (b) time trace of the SC generated in MF-2.0.

Fig. 5
Fig. 5

High-resolution spectra of the P and R branches of C 2 12 H 2 at 126 kPa in (a) MF-2.0 and (b) MF-3.2.

Tables (1)

Tables Icon

Table 1 Characteristics of Fiber Samples a

Metrics